Two-grid economical algorithms for parabolic integro-differential equations with nonlinear memory

被引:22
作者
Wang, Wansheng [1 ]
Hong, Qingguo [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Penn State Univ, Dept Math, State Coll, PA 16802 USA
基金
中国国家自然科学基金;
关键词
Parabolic integro-differential equation; Two-grid method; Error estimate; Finite element method; Stability; Backward Euler scheme; FINITE-ELEMENT METHODS; DIFFERENCE SCHEME; GALERKIN METHOD; DISCRETIZATION; ERROR; APPROXIMATIONS; QUADRATURE; MODEL;
D O I
10.1016/j.apnum.2019.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, several two-grid finite element algorithms for solving parabolic integro-differential equations (PIDEs) with nonlinear memory are presented. Analysis of these algorithms is given assuming a fully implicit time discretization. It is shown that these algorithms are as stable as the standard fully discrete finite element algorithm, and can achieve the same accuracy as the standard algorithm if the coarse grid size H and the fine grid size h satisfy H = O (h(r-1/r)). Especially for PIDEs with nonlinear memory defined by a lower order nonlinear operator, our two-grid algorithm can save significant storage and computing time. Numerical experiments are given to confirm the theoretical results. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 46
页数:19
相关论文
共 55 条
[1]   A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme [J].
Abboud, Hyam ;
Sayah, Toni .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01) :141-174
[2]   A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme [J].
Abboud, Hyam ;
Girault, Vivette ;
Sayah, Toni .
NUMERISCHE MATHEMATIK, 2009, 114 (02) :189-231
[3]   Two-grid finite volume element method for linear and nonlinear elliptic problems [J].
Bi, Chunjia ;
Ginting, Victor .
NUMERISCHE MATHEMATIK, 2007, 108 (02) :177-198
[4]   Two-Grid Discontinuous Galerkin Method for Quasi-Linear Elliptic Problems [J].
Bi, Chunjia ;
Ginting, Victor .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 49 (03) :311-331
[5]   DIFFERENCE-QUADRATURE SCHEMES FOR NONLINEAR DEGENERATE PARABOLIC INTEGRO-PDE [J].
Biswas, Imran H. ;
Jakobsen, Espen R. ;
Karlsen, Kenneth H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) :1110-1135
[6]   NUMERICAL SOLUTION TO A MIXED NAVIER-STOKES/DARCY MODEL BY THE TWO-GRID APPROACH [J].
Cai, Mingchao ;
Mu, Mo ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3325-3338
[7]  
Cannon J. R., 1988, Calcolo, V25, P187, DOI 10.1007/BF02575943
[8]   A PRIORI L2 ERROR-ESTIMATES FOR FINITE-ELEMENT METHODS FOR NONLINEAR DIFFUSION-EQUATIONS WITH MEMORY [J].
CANNON, JR ;
LIN, YP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :595-607
[9]  
Chen C, 1998, FINITE ELEMENT METHO
[10]   A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations [J].
Chen, Chuanjun ;
Liu, Wei .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (11) :2975-2984