Gate-tunable Veselago interference in a bipolar graphene microcavity

被引:6
作者
Zhang, Xi [1 ]
Ren, Wei [1 ]
Bell, Elliot [1 ]
Zhu, Ziyan [2 ,3 ]
Tsai, Kan-Ting [1 ]
Luo, Yujie [4 ,5 ]
Watanabe, Kenji [6 ]
Taniguchi, Takashi [7 ]
Kaxiras, Efthimios [2 ,8 ]
Luskin, Mitchell [9 ]
Wang, Ke [1 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[4] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[5] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[6] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki, Japan
[7] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki, Japan
[8] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[9] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
NEGATIVE REFRACTION; ELECTRON; LENS;
D O I
10.1038/s41467-022-34347-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The relativistic charge carriers in monolayer graphene can be manipulated in manners akin to conventional optics. Klein tunneling and Veselago lensing have been previously demonstrated in ballistic graphene pn-junction devices, but collimation and focusing efficiency remains relatively low, preventing realization of advanced quantum devices and controlled quantum interference. Here, we present a graphene microcavity defined by carefully-engineered local strain and electrostatic fields. Electrons are manipulated to form an interference path inside the cavity at zero magnetic field via consecutive Veselago refractions. The observation of unique Veselago interference peaks via transport measurement and their magnetic field dependence agrees with the theoretical expectation. We further utilize Veselago interference to demonstrate localization of uncollimated electrons and thus improvement in collimation efficiency. Our work sheds new light on relativistic single-particle physics and provide a new device concept toward next-generation quantum devices based on manipulation of ballistic electron trajectory. Charge carriers in graphene can be manipulated, e.g., collimated or focused, as in conventional optics but the efficiency of these processes remains low. Zhang et al. demonstrate interference of electrons in a novel graphene microcavity device and use it to enhance collimation efficiency of the electron flow.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Colloquium: Andreev reflection and Klein tunneling in graphene [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1337-1354
[2]   Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir I. .
PHYSICAL REVIEW B, 2006, 74 (04)
[3]   The focusing of electron flow and a Veselago lens in graphene p-n junctions [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir ;
Altshuler, B. L. .
SCIENCE, 2007, 315 (5816) :1252-1255
[4]   Electron optics with p-n junctions in ballistic graphene [J].
Chen, Shaowen ;
Han, Zheng ;
Elahi, Mirza M. ;
Habib, K. M. Masum ;
Wang, Lei ;
Wen, Bo ;
Gao, Yuanda ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Hone, James ;
Ghosh, Avik W. ;
Dean, Cory R. .
SCIENCE, 2016, 353 (6307) :1522-1525
[5]   Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene [J].
Crossno, Jesse ;
Shi, Jing K. ;
Wang, Ke ;
Liu, Xiaomeng ;
Harzheim, Achim ;
Lucas, Andrew ;
Sachdev, Subir ;
Kim, Philip ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Ohki, Thomas A. ;
Fong, Kin Chung .
SCIENCE, 2016, 351 (6277) :1058-1061
[6]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[7]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[8]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[9]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625
[10]  
Lee GH, 2015, NAT PHYS, V11, P925, DOI [10.1038/nphys3460, 10.1038/NPHYS3460]