New analytical solutions to the nonlinear Schrodinger equation model

被引:0
|
作者
Zhang, YY [1 ]
Zheng, Y [1 ]
Zhang, HQ [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2005年 / 60卷 / 11-12期
关键词
analytical solutions; nonlinear Schrodinger equation; generalized Riccati equation;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, new analytical solutions of the nonlinear Schrodinger equation model are obtained. The properties of the new exact solutions are shown by some figures.
引用
收藏
页码:775 / 782
页数:8
相关论文
共 50 条
  • [31] Global existence of solutions for a subcritical nonlinear Schrodinger equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 108 : 189 - 213
  • [32] Weakly decaying solutions of nonlinear Schrodinger equation in the plane
    Villarroel, Javier
    Prada, Julia
    Estevez, Pilar G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (49)
  • [33] Exact traveling wave solutions to the nonlinear Schrodinger equation
    Abdoulkary, Saidou
    Mohamadou, Alidou
    Beda, Tibi
    Gambo, Betchewe
    Doka, Serge Y.
    Alim
    Mahamoudou, Aboubakar
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 109 - 115
  • [34] An exact analytical solution to the nonlinear Schrodinger equation with variable coefficients
    Guo, Y
    Wen, SC
    Li, Y
    Qi, JX
    Wang, Q
    Optical Transmission, Switching, and Subsystem II, Pts 1 and 2, 2005, 5625 : 432 - 437
  • [35] Model order reduction for nonlinear Schrodinger equation
    Karasozen, Bolent
    Akkoyunlu, Canan
    Uzunca, Murat
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 509 - 519
  • [36] New envelope solutions for complex nonlinear Schrodinger+ equation via symbolic computation
    Yan, ZY
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (02): : 225 - 235
  • [37] New complex-valued solutions of Painleve IV: An application to the nonlinear Schrodinger equation
    Yemm, Liam T.
    Bassom, Andrew P.
    APPLIED MATHEMATICS LETTERS, 2020, 101 (101)
  • [38] New self-similar solutions of the nonlinear Schrodinger equation with moving mesh computations
    Budd, CJ
    Chen, SH
    Russell, RD
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) : 756 - 789
  • [39] New physical structures and patterns to the optical solutions of the nonlinear Schrodinger equation with a higher dimension
    Ali, Karmina K.
    Yusuf, Abdullahi
    Alquran, Marwan
    Tarla, Sibel
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (08)
  • [40] New conservation schemes for the nonlinear Schrodinger equation
    Sun, Jan-Qiang
    Ma, Zhong-Qi
    Hua, Wei
    Qin, Meng-Zhao
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 446 - 451