New analytical solutions to the nonlinear Schrodinger equation model

被引:0
作者
Zhang, YY [1 ]
Zheng, Y [1 ]
Zhang, HQ [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2005年 / 60卷 / 11-12期
关键词
analytical solutions; nonlinear Schrodinger equation; generalized Riccati equation;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, new analytical solutions of the nonlinear Schrodinger equation model are obtained. The properties of the new exact solutions are shown by some figures.
引用
收藏
页码:775 / 782
页数:8
相关论文
共 32 条
[1]  
Ablowitz MJ., 1991, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
[2]  
Bishop A. R., 1978, SOLITONS CONDENSED M
[3]  
Chen Y, 2005, Z NATURFORSCH A, V60, P1
[4]   General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burgers-type equations with nonlinear terms of any order [J].
Chen, Y ;
Li, B .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :977-984
[5]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[6]   Quasi-soliton for ultra-high speed communications [J].
Hasegawa, A .
PHYSICA D, 1998, 123 (1-4) :267-270
[7]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144
[8]  
Hasegawa A., 1995, Solitons in Optical Communications
[10]   A novel numerical approach to simulating nonlinear Schrodinger equations with varying coefficients [J].
Hong, JL ;
Liu, Y .
APPLIED MATHEMATICS LETTERS, 2003, 16 (05) :759-765