Electron paramagnetic resonance spectroscopy using a single artificial atom

被引:22
作者
Toida, Hiraku [1 ]
Matsuzaki, Yuichiro [1 ]
Kakuyanagi, Kosuke [1 ]
Zhu, Xiaobo [1 ,2 ]
Munro, William J. [1 ]
Yamaguchi, Hiroshi [1 ]
Saito, Shiro [1 ]
机构
[1] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
关键词
MAGNETIC-RESONANCE; FLUX QUBIT; SPIN; SENSITIVITY;
D O I
10.1038/s42005-019-0133-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electron paramagnetic resonance ( EPR) spectroscopy is an important technology in physics, chemistry, materials science, and biology. Sensitive detection with a small sample volume is a key objective in these areas, because it is crucial, for example, for the readout of a highly packed spin based quantum memory or the detection of transition metals in biomaterials. Here, we demonstrate a novel EPR spectrometer using a single artificial atom as a sensitive detector of spin magnetization. The artificial atom, a superconducting flux qubit, provides advantages in terms of its strong coupling with magnetic fields. We estimate a sensitivity of similar to 400 spins.Hz(-1/2) with a magnetic sensing volume around 10(-14)lambda(3) (50 femtoliters), where lambda is the wavelength of the irradiated microwave. Our artificial atom works as a highly sensitive EPR spectrometer with micron-scale area with future opportunity for measuring single spins on the nanometer scale.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Cavity QED with Magnetically Coupled Collective Spin States [J].
Amsuess, R. ;
Koller, Ch. ;
Noebauer, T. ;
Putz, S. ;
Rotter, S. ;
Sandner, K. ;
Schneider, S. ;
Schramboeck, M. ;
Steinhauser, G. ;
Ritsch, H. ;
Schmiedmayer, J. ;
Majer, J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (06)
[2]   Ultrasensitive magnetic field detection using a single artificial atom [J].
Bal, M. ;
Deng, C. ;
Orgiazzi, J. -L. ;
Ong, F. R. ;
Lupascu, A. .
NATURE COMMUNICATIONS, 2012, 3
[3]   Magnetic Resonance with Squeezed Microwaves [J].
Bienfait, A. ;
Campagne-Ibarcq, P. ;
Kiilerich, A. H. ;
Zhou, X. ;
Probst, S. ;
Pla, J. J. ;
Schenkel, T. ;
Vion, D. ;
Esteve, D. ;
Morton, J. J. L. ;
Moelmer, K. ;
Bertet, P. .
PHYSICAL REVIEW X, 2017, 7 (04)
[4]  
Bienfait A, 2016, NAT NANOTECHNOL, V11, P253, DOI [10.1038/NNANO.2015.282, 10.1038/nnano.2015.282]
[5]   Controlling spin relaxation with a cavity [J].
Bienfait, A. ;
Pla, J. J. ;
Kubo, Y. ;
Zhou, X. ;
Stern, M. ;
Lo, C. C. ;
Weis, C. D. ;
Schenkel, T. ;
Vion, D. ;
Esteve, D. ;
Morton, J. J. L. ;
Bertet, P. .
NATURE, 2016, 531 (7592) :74-+
[6]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[7]   Electron paramagnetic resonance spectroscopy of Er3+:Y2SiO5 using a Josephson bifurcation amplifier: Observation of hyperfine and quadrupole structures [J].
Budoyo, Rangga P. ;
Kakuyanagi, Kosuke ;
Toida, Hiraku ;
Matsuzaki, Yuichiro ;
Munro, William J. ;
Yamaguchi, Hiroshi ;
Saito, Shiro .
PHYSICAL REVIEW MATERIALS, 2018, 2 (01)
[8]   Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator [J].
Bushev, P. ;
Feofanov, A. K. ;
Rotzinger, H. ;
Protopopov, I. ;
Cole, J. H. ;
Wilson, C. M. ;
Fischer, G. ;
Lukashenko, A. ;
Ustinov, A. V. .
PHYSICAL REVIEW B, 2011, 84 (06)
[9]   HIGH-SENSITIVITY MAGNETIC-RESONANCE BY SQUID DETECTION [J].
CHAMBERLIN, RV ;
MOBERLY, LA ;
SYMKO, OG .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1979, 35 (3-4) :337-347
[10]  
Chesca B., 2004, The SQUID Handbook Vol I: Fundamentals and Technology of SQUIDs and SQUID Systems, V1, P29