Electron paramagnetic resonance spectroscopy using a single artificial atom

被引:22
作者
Toida, Hiraku [1 ]
Matsuzaki, Yuichiro [1 ]
Kakuyanagi, Kosuke [1 ]
Zhu, Xiaobo [1 ,2 ]
Munro, William J. [1 ]
Yamaguchi, Hiroshi [1 ]
Saito, Shiro [1 ]
机构
[1] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
COMMUNICATIONS PHYSICS | 2019年 / 2卷
关键词
MAGNETIC-RESONANCE; FLUX QUBIT; SPIN; SENSITIVITY;
D O I
10.1038/s42005-019-0133-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electron paramagnetic resonance ( EPR) spectroscopy is an important technology in physics, chemistry, materials science, and biology. Sensitive detection with a small sample volume is a key objective in these areas, because it is crucial, for example, for the readout of a highly packed spin based quantum memory or the detection of transition metals in biomaterials. Here, we demonstrate a novel EPR spectrometer using a single artificial atom as a sensitive detector of spin magnetization. The artificial atom, a superconducting flux qubit, provides advantages in terms of its strong coupling with magnetic fields. We estimate a sensitivity of similar to 400 spins.Hz(-1/2) with a magnetic sensing volume around 10(-14)lambda(3) (50 femtoliters), where lambda is the wavelength of the irradiated microwave. Our artificial atom works as a highly sensitive EPR spectrometer with micron-scale area with future opportunity for measuring single spins on the nanometer scale.
引用
收藏
页数:7
相关论文
共 41 条
  • [1] Cavity QED with Magnetically Coupled Collective Spin States
    Amsuess, R.
    Koller, Ch.
    Noebauer, T.
    Putz, S.
    Rotter, S.
    Sandner, K.
    Schneider, S.
    Schramboeck, M.
    Steinhauser, G.
    Ritsch, H.
    Schmiedmayer, J.
    Majer, J.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (06)
  • [2] Ultrasensitive magnetic field detection using a single artificial atom
    Bal, M.
    Deng, C.
    Orgiazzi, J. -L.
    Ong, F. R.
    Lupascu, A.
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [3] Magnetic Resonance with Squeezed Microwaves
    Bienfait, A.
    Campagne-Ibarcq, P.
    Kiilerich, A. H.
    Zhou, X.
    Probst, S.
    Pla, J. J.
    Schenkel, T.
    Vion, D.
    Esteve, D.
    Morton, J. J. L.
    Moelmer, K.
    Bertet, P.
    [J]. PHYSICAL REVIEW X, 2017, 7 (04):
  • [4] Bienfait A, 2016, NAT NANOTECHNOL, V11, P253, DOI [10.1038/NNANO.2015.282, 10.1038/nnano.2015.282]
  • [5] Controlling spin relaxation with a cavity
    Bienfait, A.
    Pla, J. J.
    Kubo, Y.
    Zhou, X.
    Stern, M.
    Lo, C. C.
    Weis, C. D.
    Schenkel, T.
    Vion, D.
    Esteve, D.
    Morton, J. J. L.
    Bertet, P.
    [J]. NATURE, 2016, 531 (7592) : 74 - +
  • [6] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [7] Electron paramagnetic resonance spectroscopy of Er3+:Y2SiO5 using a Josephson bifurcation amplifier: Observation of hyperfine and quadrupole structures
    Budoyo, Rangga P.
    Kakuyanagi, Kosuke
    Toida, Hiraku
    Matsuzaki, Yuichiro
    Munro, William J.
    Yamaguchi, Hiroshi
    Saito, Shiro
    [J]. PHYSICAL REVIEW MATERIALS, 2018, 2 (01):
  • [8] Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator
    Bushev, P.
    Feofanov, A. K.
    Rotzinger, H.
    Protopopov, I.
    Cole, J. H.
    Wilson, C. M.
    Fischer, G.
    Lukashenko, A.
    Ustinov, A. V.
    [J]. PHYSICAL REVIEW B, 2011, 84 (06)
  • [9] HIGH-SENSITIVITY MAGNETIC-RESONANCE BY SQUID DETECTION
    CHAMBERLIN, RV
    MOBERLY, LA
    SYMKO, OG
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 1979, 35 (3-4) : 337 - 347
  • [10] Chesca B., 2004, The SQUID Handbook Vol I: Fundamentals and Technology of SQUIDs and SQUID Systems, V1, P29