Thermal equation of state and thermodynamic properties of molybdenum at high pressures

被引:53
作者
Litasov, Konstantin D. [1 ,2 ]
Dorogokupets, Peter I. [3 ]
Ohtani, Eiji [4 ]
Fei, Yingwei [5 ]
Shatskiy, Anton [1 ,2 ,4 ]
Sharygin, Igor S. [1 ,2 ]
Gavryushkin, Pavel N. [1 ,2 ]
Rashchenko, Sergey V. [1 ,2 ]
Seryotkin, Yury V. [1 ,2 ]
Higo, Yiji [6 ]
Funakoshi, Kenichi [6 ]
Chanyshev, Artem D. [1 ,2 ]
Lobanov, Sergey S. [2 ,5 ]
机构
[1] Novosibirsk State Univ, Dept Geol & Geophys, Novosibirsk 630090, Russia
[2] SB RAS, VS Sobolev Inst Geol & Mineral, Novosibirsk 630090, Russia
[3] SB RAS, Inst Earths Crust, Irkutsk 664033, Russia
[4] Tohoku Univ, Grad Sch Sci, Dept Earth & Planetary Mat Sci, Sendai, Miyagi 9808578, Japan
[5] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA
[6] Japan Synchrotron Radiat Res Inst, Spring 8, Kouto, Hyogo 6785198, Japan
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
ELASTIC-CONSTANTS; SHOCK COMPRESSION; PHASE-TRANSITIONS; NB-MO; TEMPERATURE; CU; SOLIDS; TA; AU; EXPANSION;
D O I
10.1063/1.4794127
中图分类号
O59 [应用物理学];
学科分类号
摘要
A comprehensive P-V-T dataset for bcc-Mo was obtained at pressures up to 31 GPa and temperatures from 300 to 1673 K using MgO and Au pressure calibrants. The thermodynamic analysis of these data was performed using high-temperature Birch-Murnaghan (HTBM) equations of state (EOS), Mie-Gruneisen-Debye (MGD) relation combined with the room-temperature Vinet EOS, and newly proposed Kunc-Einstein (KE) approach. The analysis of room-temperature compression data with the Vinet EOS yields V-0 = 31.14 +/- 0.02 angstrom(3), K-T=260 +/- 1 GPa, and K-T'=4.21 +/- 0.05. The derived thermoelastic parameters for the HTBM include (partial derivative K-T/partial derivative T)(P) = -0.019 +/- 0.001 GPa/K and thermal expansion alpha - a(0) + a(1)T with a(0) - 1.55 (+/- 0.05) x 10(-5) K-1 and a(1) - 0.68 (+/- 0.07) x 10(-8) K-2. Fitting to the MGD relation yields gamma(0)=2.03 +/- 0.02 and q=0.24 +/- 0.02 with the Debye temperature (theta(0)) fixed at 455-470 K. Two models are proposed for the KE EOS. The model 1 (Mo-1) is the best fit to our P-V-T data, whereas the second model (Mo-2) is derived by including the shock compression and other experimental measurements. Nevertheless, both models provide similar thermoelastic parameters. Parameters used on Mo-1 include two Einstein temperatures Theta(E10) = 366 K and Theta(E20) - 208 K; Gruneisen parameter at ambient condition gamma(0) - 1.64 and infinite compression gamma(infinity)=0.358 with beta = 0.323; and additional fitting parameters m = 0.195, e(0) = 0.9 x 10(-6) K-1, and g 5.6. Fixed parameters include k - 2 in Kunc EOS, m(E1) - m(E2) - 1.5 in expression for Einstein temperature, and a(0) - 0 (an intrinsic anharmonicity parameter). These parameters are the best representation of the experimental data for Mo and can be used for variety of thermodynamic calculations for Mo and Mo-containing systems including phase diagrams, chemical reactions, and electronic structure. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794127]
引用
收藏
页数:10
相关论文
共 68 条
[1]  
Al'tshuler L. V., 1987, Journal of Applied Mechanics and Technical Physics, V28, P129, DOI 10.1007/BF00918785
[2]   Thermodynamics of hexagonal-close-packed iron under Earth's core conditions -: art. no. 045123 [J].
Alfè, D ;
Price, GD ;
Gillan, MJ .
PHYSICAL REVIEW B, 2001, 64 (04)
[3]  
Anderson O. L., 1995, Equations of State of Solids for Geophysics and Ceramic Science
[4]   Shock compression of preheated molybdenum to 300 GPa [J].
Asimow, Paul D. ;
Sun, Daoyuan ;
Ahrens, Thomas J. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2009, 174 (1-4) :302-308
[5]   Equation of state data for iron at pressures beyond 10 Mbar [J].
Batani, D ;
Morelli, A ;
Tomasini, M ;
Benuzzi-Mounaix, A ;
Philippe, F ;
Koenig, M ;
Marchet, B ;
Masclet, I ;
Rabec, M ;
Reverdin, C ;
Cauble, R ;
Celliers, P ;
Collins, G ;
Da Silva, L ;
Hall, T ;
Moret, M ;
Sacchi, B ;
Baclet, P ;
Cathala, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (23) :2355021-2355024
[6]   High-pressure melting of molybdenum [J].
Belonoshko, AB ;
Simak, SI ;
Kochetov, AE ;
Johansson, B ;
Burakovsky, L ;
Preston, DL .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :195701-1
[7]   ELASTICITY AND CONSTITUTION OF THE EARTH INTERIOR [J].
BIRCH, F .
JOURNAL OF GEOPHYSICAL RESEARCH, 1952, 57 (02) :227-286
[8]   ELASTIC CONSTANTS OF SINGLE-CRYSTAL MO AND W BETWEEN 77 DEGREES AND 500 DEGREES K [J].
BOLEF, DI ;
DEKLERK, J .
JOURNAL OF APPLIED PHYSICS, 1962, 33 (07) :2311-&
[9]   ELASTIC-CONSTANTS IN NB-MO ALLOYS FROM ZERO TEMPERATURE TO THE MELTING-POINT - EXPERIMENT AND THEORY [J].
BUJARD, P ;
SANJINES, R ;
WALKER, E ;
ASHKENAZI, J ;
PETER, M .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1981, 11 (04) :775-786
[10]  
Chase M.W., 1998, J. of Physical and Chemical Reference Data, DOI 10.18434/T42S31