van der Waals oxide heteroepitaxy for soft transparent electronics

被引:30
作者
Bitla, Yugandhar [1 ]
Chu, Ying-Hao [2 ,3 ]
机构
[1] Cent Univ Rajasthan, Sch Phys Sci, Dept Phys, Ajmer 305817, India
[2] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[3] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan
关键词
EPITAXIAL-GROWTH; THIN-FILMS; HIGH-PERFORMANCE; MUSCOVITE MICA; 2-DIMENSIONAL MATERIALS; FLEXIBLE HETEROEPITAXY; SOLAR-CELLS; HETEROSTRUCTURES; TRANSISTORS; PLATFORM;
D O I
10.1039/d0nr04219f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quest for multifunctional, low-power and environment friendly electronics has brought research on materials to the forefront. For instance, as the emerging field of transparent flexible electronics is set to greatly impact our daily lives, more stringent requirements are being imposed on functional materials. Inherently flexible polymers and metal foil templates have yielded limited success due to their incompatible high-temperature growth and non-transparency, respectively. Although the epitaxial-transfer strategy has shown promising results, it suffers from tedious and complicated lift-off-transfer processes. The advent of graphene, in particular, and 2D layered materials, in general, with ultrathin scalability has revolutionized this field. Herein, we review the direct growth of epitaxial functional oxides on flexible transparent mica substratesviavan der Waals heteroepitaxy, which mitigates misfit strain and substrate clamping for soft transparent electronics applications. Recent advances in practical applications of flexible and transparent electronic elements are discussed. Finally, several important directions, challenges and perspectives for commercialization are also outlined. We anticipate that this promising strategy to build transparent flexible optoelectronic devices and improve their performance will open up new avenues for researchers to explore.
引用
收藏
页码:18523 / 18544
页数:22
相关论文
共 50 条
[41]   Synthetic Semimetals with van der Waals Interfaces [J].
Reddy, Bojja Aditya ;
Ponomarev, Evgeniy ;
Gutierrez-Lezama, Ignacio ;
Ubrig, Nicolas ;
Barreteau, Celine ;
Giannini, Enrico ;
Morpurgo, Alberto F. .
NANO LETTERS, 2020, 20 (02) :1322-1328
[42]   Supercurrent in van der Waals Josephson junction [J].
Yabuki, Naoto ;
Moriya, Rai ;
Arai, Miho ;
Sata, Yohta ;
Morikawa, Sei ;
Masubuchi, Satoru ;
Machida, Tomoki .
NATURE COMMUNICATIONS, 2016, 7
[43]   Heteroepitaxial van der Waals semiconductor superlattices [J].
Jin, Gangtae ;
Lee, Chang-Soo ;
Okello, Odongo F. N. ;
Lee, Suk-Ho ;
Park, Min Yeong ;
Cha, Soonyoung ;
Seo, Seung-Young ;
Moon, Gunho ;
Min, Seok Young ;
Yang, Dong-Hwan ;
Han, Cheolhee ;
Ahn, Hyungju ;
Lee, Jekwan ;
Choi, Hyunyong ;
Kim, Jonghwan ;
Choi, Si-Young ;
Jo, Moon-Ho .
NATURE NANOTECHNOLOGY, 2021, 16 (10) :1092-+
[44]   Direct Synthesis of van der Waals Solids [J].
Lin, Yu-Chuan ;
Lu, Ning ;
Perea-Lopez, Nestor ;
Li, Jie ;
Lin, Zhong ;
Peng, Xin ;
Lee, Chia Hui ;
Sun, Ce ;
Calderin, Lazaro ;
Browning, Paul N. ;
Bresnehan, Michael S. ;
Kim, Moon J. ;
Mayer, Theresa S. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2014, 8 (04) :3715-3723
[45]   Morphotaxy of Layered van der Waals Materials [J].
Lam, David ;
Lebedev, Dmitry ;
Hersam, Mark C. .
ACS NANO, 2022, 16 (05) :7144-7167
[46]   Van der Waals Pinning Strategy for High Electrical Breakdown Resistance in 2D-Material Electronics [J].
Dong, Wenlong ;
Liao, Yangchao ;
Feng, Shizhe ;
Wang, Shijun ;
Jarapanyacheep, Rapisa ;
Cui, Xuwei ;
Huang, Jingjie ;
Hou, Yuan ;
Liu, Luqi ;
Xu, Zhiping ;
Zhang, Zhong .
SMALL, 2025,
[47]   Van der Waals Heterostructure Based Field Effect Transistor Application [J].
Li, Jingyu ;
Chen, Xiaozhang ;
Zhang, David Wei ;
Zhou, Peng .
CRYSTALS, 2018, 8 (01)
[48]   Superlattices based on van der Waals 2D materials [J].
Ryu, Yu Kyoung ;
Frisenda, Riccardo ;
Castellanos-Gomez, Andres .
CHEMICAL COMMUNICATIONS, 2019, 55 (77) :11498-11510
[49]   Van der Waals heterostructures with one-dimensional atomic crystals [J].
Qin, Jing-Kai ;
Wang, Cong ;
Zhen, Liang ;
Li, Lain-Jong ;
Xu, Cheng-Yan ;
Chai, Yang .
PROGRESS IN MATERIALS SCIENCE, 2021, 122
[50]   Control of spin-charge conversion in van der Waals heterostructures [J].
Galceran, Regina ;
Tian, Bo ;
Li, Junzhu ;
Bonell, Frederic ;
Jamet, Matthieu ;
Vergnaud, Celine ;
Marty, Alain ;
Garcia, Jose H. ;
Sierra, Juan F. ;
Costache, Marius, V ;
Roche, Stephan ;
Valenzuela, Sergio O. ;
Manchon, Aurelien ;
Zhang, Xixiang ;
Schwingenschlogl, Udo .
APL MATERIALS, 2021, 9 (10)