CONCENTRATING PATTERNS OF REACTION-DIFFUSION SYSTEMS: A VARIATIONAL APPROACH

被引:10
作者
Ding, Yanheng [1 ]
Xu, Tian [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
美国国家科学基金会;
关键词
Reaction-diffusion system; singular perturbation; concentration; NONLINEAR SCHRODINGER-EQUATIONS; ELLIPTIC PROBLEMS; STANDING WAVES; BOUND-STATES;
D O I
10.1090/tran/6626
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our purpose is to motivate an analytic characterization aimed at predicting patterns for general reaction-diffusion systems, depending on the spatial distribution involved in the reaction terms. It is shown that there must be a pattern concentrating around the local minimum of the chemical potential distribution for small diffusion coefficients. A multiple concentrating result is also established to illustrate the mechanisms leading to emergent spatial patterns. The results of this paper were proved by using a general variational technique. This enables us to consider nonlinearities which grow either super quadratic or asymptotic quadratic at infinity.
引用
收藏
页码:97 / 138
页数:42
相关论文
共 29 条
[1]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[2]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[3]   Homoclinic solutions of an infinite-dimensional Hamiltonian system [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :289-310
[4]  
Besov O. V., 1975, INTEGRALNYE PREDSTAV
[5]  
Brzis H., 1978, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V5, P225
[6]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316
[7]   Standing waves for nonlinear Schrodinger equations with a general nonlinearity [J].
Byeon, Jaeyoung ;
Jeanjean, Louis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 185 (02) :185-200
[8]  
Clement P., 1997, ANN SC NORM SUP PISA, V24, P367
[9]  
D'Aprile T, 2006, ANN SCUOLA NORM-SCI, V5, P219
[10]   Multi-peak bound states for nonlinear Schrodinger equations [J].
Del Pino, M ;
Felmer, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :127-149