An Object Oriented Approach to Fuzzy Actor-Critic Learning for Multi-Agent Differential Games

被引:0
|
作者
Schwartz, Howard [1 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, 1125 Colonel By Dr, Ottawa, ON, Canada
来源
2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019) | 2019年
关键词
reinforcement learning; fuzzy systems; differential games; actor critic learning; multi-agent systems; CONTROLLERS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new form of the multi-agent fuzzy actor-critic learning algorithm for differential games. An object oriented approach to defining the relationships between agents is proposed. We define the fuzzy inference system as a network structure and define attributes of the agents as rule sets that fired and rewards associated with the fired rule set. The resulting fuzzy actor-critic reinforcement learning algorithm is investigated for playing the differential pursuer super evader game. The game is played in a continuous state and action space to simulate a real world environment. All the robots in the game are simultaneously learning.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [1] An actor-critic algorithm for multi-agent learning in queue-based stochastic games
    Sundar, D. Krishna
    Ravikumar, K.
    NEUROCOMPUTING, 2014, 127 : 258 - 265
  • [2] Capacity-Limited Decentralized Actor-Critic for Multi-Agent Games
    Malloy, Tyler
    Sims, Chris R.
    Klinger, Tim
    Liu, Miao
    Riemer, Matthew
    Tesauro, Gerald
    2021 IEEE CONFERENCE ON GAMES (COG), 2021, : 332 - 339
  • [3] A multi-agent reinforcement learning using Actor-Critic methods
    Li, Chun-Gui
    Wang, Meng
    Yuan, Qing-Neng
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 878 - 882
  • [4] Entropy regularized actor-critic based multi-agent deep reinforcement learning for stochastic games
    Hao, Dong
    Zhang, Dongcheng
    Shi, Qi
    Li, Kai
    Information Sciences, 2022, 617 : 17 - 40
  • [5] Actor-Critic for Multi-Agent Reinforcement Learning with Self-Attention
    Zhao, Juan
    Zhu, Tong
    Xiao, Shuo
    Gao, Zongqian
    Sun, Hao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (09)
  • [6] Multi-agent actor-critic with time dynamical opponent model
    Tian, Yuan
    Kladny, Klaus -Rudolf
    Wang, Qin
    Huang, Zhiwu
    Fink, Olga
    NEUROCOMPUTING, 2023, 517 : 165 - 172
  • [7] Structural relational inference actor-critic for multi-agent reinforcement learning
    Zhang, Xianjie
    Liu, Yu
    Xu, Xiujuan
    Huang, Qiong
    Mao, Hangyu
    Carie, Anil
    NEUROCOMPUTING, 2021, 459 : 383 - 394
  • [8] Multi-agent off-policy actor-critic algorithm for distributed multi-task reinforcement learning
    Stankovic, Milos S.
    Beko, Marko
    Ilic, Nemanja
    Stankovic, Srdjan S.
    EUROPEAN JOURNAL OF CONTROL, 2023, 74
  • [9] A New Advantage Actor-Critic Algorithm For Multi-Agent Environments
    Paczolay, Gabor
    Harmati, Istvan
    2020 23RD IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2020,
  • [10] Improving sample efficiency in Multi-Agent Actor-Critic methods
    Ye, Zhenhui
    Chen, Yining
    Jiang, Xiaohong
    Song, Guanghua
    Yang, Bowei
    Fan, Sheng
    APPLIED INTELLIGENCE, 2022, 52 (04) : 3691 - 3704