Roles of Keap1-Nrf2 System in Upper Aerodigestive Tract Carcinogenesis

被引:63
|
作者
Ohkoshi, Akira [1 ,2 ]
Suzuki, Takafumi [1 ]
Ono, Masao [3 ]
Kobayashi, Toshimitsu [2 ]
Yamamoto, Masayuki [1 ]
机构
[1] Tohoku Univ, Grad Sch Med, Dept Med Biochem, Sendai, Miyagi 9808575, Japan
[2] Tohoku Univ, Grad Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Sendai, Miyagi 9808575, Japan
[3] Tohoku Univ, Grad Sch Med, Dept Histopathol, Sendai, Miyagi 9808575, Japan
关键词
NRF2 KNOCKOUT MICE; OXIDATIVE STRESS; INCREASED SUSCEPTIBILITY; ACTIVATION; PROTECTION; SULFORAPHANE; RESISTANCE; EFFICACY; PATHWAY; RISK;
D O I
10.1158/1940-6207.CAPR-12-0401-T
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cancers in the upper aerodigestive tract, including cancers of the tongue and the esophagus, are the third leading cause of cancer-related deaths in the world, and oxidative stress is well recognized as one of the major risk factors for carcinogenesis. The Keap1-Nrf2 system plays a critical role in cellular defense against oxidative stress, but little is known about its association with upper aerodigestive tract carcinogenesis. In this study, we examined whether loss of Nrf2-function exacerbates carcinogenesis by using an experimental carcinogenesis model that is induced by 4-nitroquinoline-1-oxide (4NQO). We found that Nrf2-knockout (Nrf2-KO) mice were more susceptible to 4NQO-induced tongue and esophageal carcinogenesis than wildtype mice, which suggests that Nrf2 is important for cancer prevention. We also examined how the suppression of Keap1 function or the induction of Nrf2 activity affected 4NQO carcinogenesis. Keap1-knockdown (Keap1-KD) mice were resistant to 4NQO-induced tongue and esophageal carcinogenesis. Importantly, no growth advantage was observed in tongue tumors in the Keap1-KD mice. These results show that the Keap1-Nrf2 system regulates an important defense mechanism against upper aerodigestive tract carcinogenesis. In addition to several important functions of Nrf2 that lead to cancer chemoprevention, we hypothesize that a mechanical defense of thickened keratin layers may also be a chemopreventive factor because thickened, stratified, squamous epithelium was found on the tongue of Keap1-KD mice. Cancer Prev Res; 6(2); 149-59. (C)2012 AACR.
引用
收藏
页码:149 / 159
页数:11
相关论文
共 50 条
  • [41] Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review
    Qin, Jiang-Jiang
    Cheng, Xiang-Dong
    Zhang, Jia
    Zhang, Wei-Dong
    CELL COMMUNICATION AND SIGNALING, 2019, 17 (01)
  • [42] Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway
    Kageyama, Shun
    Sou, Yu-shin
    Uemura, Takefumi
    Kametaka, Satoshi
    Saito, Tetsuya
    Ishimura, Ryosuke
    Kouno, Tsuguka
    Bedford, Lynn
    Mayer, R. John
    Lee, Myung-Shik
    Yamamoto, Masayuki
    Waguri, Satoshi
    Tanaka, Keiji
    Komatsu, Masaaki
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (36) : 24944 - 24955
  • [43] Monitoring Keap1-Nrf2 interactions in single live cells
    Baird, Liam
    Swift, Sam
    Lleres, David
    Dinkova-Kostova, Albena T.
    BIOTECHNOLOGY ADVANCES, 2014, 32 (06) : 1133 - 1144
  • [44] Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker?
    Barrera-Rodriguez, Raul
    BIOMEDICAL REPORTS, 2018, 9 (05) : 375 - 382
  • [45] Keap1-Nrf2 activation in the presence and absence of DJ-1
    Gan, Li
    Johnson, Delinda A.
    Johnson, Jeffrey A.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2010, 31 (06) : 967 - 977
  • [46] Keap1-Nrf2 Signaling: A Target for Cancer Prevention by Sulforaphane
    Kensler, Thomas W.
    Egner, Patricia A.
    Agyeman, Abena S.
    Visvanathan, Kala
    Groopman, John D.
    Chen, Jian-Guo
    Chen, Tao-Yang
    Fahey, Jed W.
    Talalay, Paul
    NATURAL PRODUCTS IN CANCER PREVENTION AND THERAPY, 2013, 329 : 163 - 177
  • [47] Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases
    Guo, Zi
    Mo, Zhaohui
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 14 (06) : 869 - 883
  • [48] Keap1-Nrf2 system regulates cell fate determination of hematopoietic stem cells
    Murakami, Shohei
    Shimizu, Ritsuko
    Romeo, Paul-Henri
    Yamamoto, Masayuki
    Motohashi, Hozumi
    GENES TO CELLS, 2014, 19 (03) : 239 - 253
  • [49] Molecular and Chemical Regulation of the Keap1-Nrf2 Signaling Pathway
    Keum, Young-Sam
    Choi, Bu Young
    MOLECULES, 2014, 19 (07) : 10074 - 10089
  • [50] Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer
    Almeida, Micaela
    Ferreira, Catarina L.
    Tome, Rosa Maria
    Fonseca-Moutinho, Jose
    Polonia, Antonio
    Ramalhinho, Ana Cristina
    Breitenfeld, Luiza
    CANCERS, 2024, 16 (13)