Mixed Boundary Value Problems for Nonlinear Elliptic Systems in n-Dimensional Lipschitzian Domains

被引:0
作者
Ebmeyer, C. [1 ]
机构
[1] Univ Bonn, Math Seminar, D-53115 Bonn, Germany
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 1999年 / 18卷 / 03期
关键词
Mixed boundary value problems; piecewise smooth boundaries; Nikolskii spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let u : Omega -> R-N be the solution of the nonlinear elliptic system - Sigma(n)(i=1)partial derivative F-i(i)(x,del u) = f(x) + Sigma(n)(i=1)partial derivative(i)f(i)(x) where Omega subset of R-n is a bounded domain with a piecewise smooth boundary (e. g., Omega is a polyhedron). It is assumed that a mixed boundary value condition is given. Global regularity results in Sobolev and in Nikolskii spaces are proven, in particular W-s,W-2(Omega)](N)- regu1arity (s <3/2) of IL.
引用
收藏
页码:539 / 555
页数:17
相关论文
共 17 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   ON MIXED BOUNDARY-VALUE PROBLEMS OF DIRICHLET OBLIQUE-DERIVATIVE TYPE IN PLANE DOMAINS WITH PIECEWISE DIFFERENTIABLE BOUNDARY [J].
BANASIAK, J ;
ROACH, GF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 79 (01) :111-131
[4]  
Banasiak J., 1993, DEMONSTR MATH, V26, P327
[5]  
Borsuk M. V., 1992, ST PETERSB MATH J, V3, P1281
[6]  
Borsuk M. V., 1992, UKR MATH J, V44, P149
[7]  
DAUGE M, 1988, LECT NOTES MATH, V1341, P1
[8]   Mixed boundary value problems for nonlinear elliptic equations in multidimensional non-smooth domains [J].
Ebmeyer, C ;
Frehse, J .
MATHEMATISCHE NACHRICHTEN, 1999, 203 :47-74
[9]   EDGE BEHAVIOR OF THE SOLUTION OF AN ELLIPTIC PROBLEM [J].
GRISVARD, P .
MATHEMATISCHE NACHRICHTEN, 1987, 132 :281-299
[10]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24