Enhanced yield of ethylene glycol production from D-xylose by pathway optimization in Escherichia coli

被引:35
作者
Cabulong, Rhudith B. [1 ]
Valdehuesa, Kris Nino G. [1 ]
Ramos, Kristine Rose M. [1 ]
Nisola, Grace M. [1 ]
Lee, Won-Keun [2 ]
Lee, Chang Ro [2 ]
Chung, Wook-Jin [1 ]
机构
[1] Myongji Univ, E2FTC, DEST, Myongji Ro 116, Yongin 17058, Gyeonggi Do, South Korea
[2] Myongji Univ, Div Biosci & Bioinformat, Myongji Ro 116, Yongin 17058, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Aldehyde reductase; Ethylene glycol; Dahms pathway; D-xylose; Metabolic engineering; YjgB; MICROBIAL-PRODUCTION; REDUCTASE; ACID; 1,2,4-BUTANETRIOL; BIOSYNTHESIS; METABOLISM; EXPRESSION; CONVERSION; ETHANOL; SYSTEMS;
D O I
10.1016/j.enzmictec.2016.10.020
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The microbial production of renewable ethylene glycol (EG) has been gaining attention recently due to its growing importance in chemical and polymer industries. EG has been successfully produced biosynthetically from D-xylose through several novel pathways. The first report on EG biosynthesis employed the Dahms pathway in Escherichia coli wherein 71% of the theoretical yield was achieved. This report further improved the EG yield by implementing metabolic engineering strategies. First, D-xylonic acid accumulation was reduced by employing a weak promoter which provided a tighter control over Xdh expression. Second, EG yield was further improved by expressing the YjgB, which was identified as the most suitable aldehyde reductase endogenous to E. coli. Finally, cellular growth, D-xylose consumption, and EG yield were further increased by blocking a competing reaction. The final strain (WTXB) was able to reach up to 98% of the theoretical yield (25% higher as compared to the first study), the highest reported value for EG production from D-xylose. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 47 条
[1]   Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities [J].
Akhtar, M. Kalim ;
Turner, Nicholas J. ;
Jones, Patrik R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (01) :87-92
[2]   Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli [J].
Alkim, Ceren ;
Cam, Yvan ;
Trichez, Debora ;
Auriol, Clement ;
Spina, Lucie ;
Vax, Amelie ;
Bartolo, Francois ;
Besse, Philippe ;
Francois, Jean Marie ;
Walther, Thomas .
MICROBIAL CELL FACTORIES, 2015, 14
[3]   TIGHTLY REGULATED TAC PROMOTER VECTORS USEFUL FOR THE EXPRESSION OF UNFUSED AND FUSED PROTEINS IN ESCHERICHIA-COLI [J].
AMANN, E ;
OCHS, B ;
ABEL, KJ .
GENE, 1988, 69 (02) :301-315
[4]   Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes [J].
Atsumi, Shota ;
Wu, Tung-Yun ;
Eckl, Eva-Maria ;
Hawkins, Sarah D. ;
Buelter, Thomas ;
Liao, James C. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (03) :651-657
[5]  
BALDOMA L, 1987, J BIOL CHEM, V262, P13991
[6]   Induction of the soxRS regulon of Escherichia coli by glycolaldehyde [J].
Benov, L ;
Fridovich, I .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 407 (01) :45-48
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Biosynthesis of odd-chain fatty alcohols in Escherichia coli [J].
Cao, Ying-Xiu ;
Xiao, Wen-Hai ;
Liu, Duo ;
Zhang, Jin-Lai ;
Ding, Ming-Zhu ;
Yuan, Ying-Jin .
METABOLIC ENGINEERING, 2015, 29 :113-123
[9]   GENE DISRUPTION IN ESCHERICHIA-COLI - TCR AND KM(R) CASSETTES WITH THE OPTION OF FLP-CATALYZED EXCISION OF THE ANTIBIOTIC-RESISTANCE DETERMINANT [J].
CHEREPANOV, PP ;
WACKERNAGEL, W .
GENE, 1995, 158 (01) :9-14
[10]   ONE-STEP PREPARATION OF COMPETENT ESCHERICHIA-COLI - TRANSFORMATION AND STORAGE OF BACTERIAL-CELLS IN THE SAME SOLUTION [J].
CHUNG, CT ;
NIEMELA, SL ;
MILLER, RH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (07) :2172-2175