Application of a Decision Tree Model to Predict the Outcome of Non-Intensive Inpatients Hospitalized for COVID-19

被引:9
|
作者
Giotta, Massimo [1 ]
Trerotoli, Paolo [2 ]
Palmieri, Vincenzo Ostilio [3 ]
Passerini, Francesca [3 ]
Portincasa, Piero [3 ]
Dargenio, Ilaria [1 ]
Mokhtari, Jihad [4 ]
Montagna, Maria Teresa [2 ]
De Vito, Danila [4 ]
机构
[1] Univ Bari Aldo Moro, Sch Specializat Med Stat & Biometry, Sch Med, I-70121 Bari, Italy
[2] Univ Bari Aldo Moro, Dept Interdisciplinary Med, I-70121 Bari, Italy
[3] Univ Bari Aldo Moro, Dept Biomed Sci & Human Oncol, I-70121 Bari, Italy
[4] Univ Bari Aldo Moro, Dept Basic Med Sci Neurosci & Sense Organs, Med Sch, I-70121 Bari, Italy
关键词
COVID-19; machine learning; clinical aspect; prognostic markers; haematochemical parameters; prediction;
D O I
10.3390/ijerph192013016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many studies have identified predictors of outcomes for inpatients with coronavirus disease 2019 (COVID-19), especially in intensive care units. However, most retrospective studies applied regression methods to evaluate the risk of death or worsening health. Recently, new studies have based their conclusions on retrospective studies by applying machine learning methods. This study applied a machine learning method based on decision tree methods to define predictors of outcomes in an internal medicine unit with a prospective study design. The main result was that the first variable to evaluate prediction was the international normalized ratio, a measure related to prothrombin time, followed by immunoglobulin M response. The model allowed the threshold determination for each continuous blood or haematological parameter and drew a path toward the outcome. The model's performance (accuracy, 75.93%; sensitivity, 99.61%; and specificity, 23.43%) was validated with a k-fold repeated cross-validation. The results suggest that a machine learning approach could help clinicians to obtain information that could be useful as an alert for disease progression in patients with COVID-19. Further research should explore the acceptability of these results to physicians in current practice and analyze the impact of machine learning-guided decisions on patient outcomes.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Development and validation of nomogram to predict severe illness requiring intensive care follow up in hospitalized COVID-19 cases
    Rahmet Guner
    Bircan Kayaaslan
    Imran Hasanoglu
    Adalet Aypak
    Hurrem Bodur
    Ihsan Ates
    Esragul Akinci
    Deniz Erdem
    Fatma Eser
    Seval Izdes
    Ayse Kaya Kalem
    Aliye Bastug
    Aysegul Karalezli
    Aziz Ahmet Surel
    Muge Ayhan
    Selma Karaahmetoglu
    Isıl Ozkocak Turan
    Emine Arguder
    Burcu Ozdemir
    Mehmet Nevzat Mutlu
    Yesim Aybar Bilir
    Elif Mukime Sarıcaoglu
    Derya Gokcinar
    Sibel Gunay
    Bedia Dinc
    Emin Gemcioglu
    Ruveyda Bilmez
    Omer Aydos
    Dilek Asilturk
    Osman Inan
    Turan Buzgan
    BMC Infectious Diseases, 21
  • [42] A Machine Learning Approach to Predict the Rehabilitation Outcome in Convalescent COVID-19 Patients
    Adamo, Sarah
    Ambrosino, Pasquale
    Ricciardi, Carlo
    Accardo, Mariasofia
    Mosella, Marco
    Cesarelli, Mario
    d'Addio, Giovanni
    Maniscalco, Mauro
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03):
  • [43] Classification and analysis of outcome predictors in non-critically ill COVID-19 patients
    Venturini, Sergio
    Orso, Daniele
    Cugini, Francesco
    Crapis, Massimo
    Fossati, Sara
    Callegari, Astrid
    Pellis, Tommaso
    Tonizzo, Maurizio
    Grembiale, Alessandro
    Rosso, Alessia
    Tamburrini, Mario
    D'Andrea, Natascia
    Vetrugno, Luigi
    Bove, Tiziana
    INTERNAL MEDICINE JOURNAL, 2021, 51 (04) : 506 - 514
  • [44] COLCHICINE ANTI-INFLAMMATORY THERAPY FOR NON-INTENSIVE CARE UNIT HOSPITALIZED COVID-19 PATIENTS: RESULTS FROM A PILOT OPEN-LABEL, RANDOMIZED CONTROLLED CLINICAL TRIAL
    Haroon, M. Z.
    Farooq, U.
    Ashrap, S.
    Zeb, S.
    Gillani, S. Y.
    Malik, S.
    Ali, R.
    Irshad, R.
    Mehmood, Z.
    Abbas, Y.
    Masood, A.
    Ghafoor, A.
    Khalil, A. T.
    Asif, H.
    Khan, S.
    Ujjan, I. D.
    Nigar, R.
    Livingstone, S.
    Pascual-Figal, D. A.
    Togni, S.
    Allegrini, P.
    Riva, A.
    Khan, A.
    JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 2022, 73 (03): : 413 - 420
  • [45] Development and validation of nomogram to predict severe illness requiring intensive care follow up in hospitalized COVID-19 cases
    Guner, Rahmet
    Kayaaslan, Bircan
    Hasanoglu, Imran
    Aypak, Adalet
    Bodur, Hurrem
    Ates, Ihsan
    Akinci, Esragul
    Erdem, Deniz
    Eser, Fatma
    Izdes, Seval
    Kalem, Ayse Kaya
    Bastug, Aliye
    Karalezli, Aysegul
    Surel, Aziz Ahmet
    Ayhan, Muge
    Karaahmetoglu, Selma
    Turan, Isil Ozkocak
    Arguder, Emine
    Ozdemir, Burcu
    Mutlu, Mehmet Nevzat
    Bilir, Yesim Aybar
    Saricaoglu, Elif Mukime
    Gokcinar, Derya
    Gunay, Sibel
    Dinc, Bedia
    Gemcioglu, Emin
    Bilmez, Ruveyda
    Aydos, Omer
    Asilturk, Dilek
    Inan, Osman
    Buzgan, Turan
    BMC INFECTIOUS DISEASES, 2021, 21 (01)
  • [46] Homocysteine (Hcy) assessment to predict outcomes of hospitalized Covid-19 patients: a multicenter study on 313 Covid-19 patients
    Ponti, Giovanni
    Roli, Laura
    Oliva, Gabriella
    Manfredini, Marco
    Trenti, Tommaso
    Kaleci, Shaniko
    Iannella, Raffaele
    Balzano, Brigida
    Coppola, Antonietta
    Fiorentino, Giuseppe
    Ozben, Tomris
    Paoli, Venere Delli
    Debbia, Daria
    De Santis, Elena
    Pecoraro, Valentina
    Melegari, Alessandra
    Sansone, Monica Rosalia
    Lugara, Marina
    Tomasi, Aldo
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2021, 59 (09) : E354 - E357
  • [47] Formative Evaluation of a Student Symptom Decision Tree for COVID-19
    Campo, Maritza Salazar
    Miovsky, Nicole
    Schneider, Margaret
    Woodworth, Amanda
    DeHaven, Michelle
    Kahn, Pamela
    Weiss, Michael
    Cooper, Dan M.
    HEALTH BEHAVIOR AND POLICY REVIEW, 2023, 10 (01) : 1140 - 1152
  • [48] Clinical Outcome of Hospitalized COVID-19 Patients with History of Atrial Fibrillation
    Russo, Vincenzo
    Silverio, Angelo
    Scudiero, Fernando
    D'Andrea, Antonello
    Attena, Emilio
    Di Palma, Gisella
    Parodi, Guido
    Caso, Valentina
    Albani, Stefano
    Galasso, Gennaro
    Imbalzano, Egidio
    Golino, Paolo
    Di Maio, Marco
    MEDICINA-LITHUANIA, 2022, 58 (03):
  • [49] The role of admission electrocardiogram in predicting outcome in patients hospitalized for COVID-19
    Zeijlon, Rickard
    Hallgren, Peter
    Le, Vina
    Chamat, Jasmina
    Wagerman, Johan
    Enabtawi, Israa
    Rawshani, Araz
    Unenge, Sten
    Jha, Sandeep
    Omerovic, Elmir
    Redfors, Bjorn
    JOURNAL OF ELECTROCARDIOLOGY, 2022, 75 : 10 - 18
  • [50] Baseline electrocardiographic findings as predictors of outcome in hospitalized patients with COVID-19
    Abdelwahab, Heba W.
    Arafa, Sherif
    Shaltout, Shaker W.
    El Hoseiny, Mahmoud
    Alemam, Doaa S.
    Elmaria, Marwa O.
    EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS, 2022, 71 (02): : 170 - 174