Application of a Decision Tree Model to Predict the Outcome of Non-Intensive Inpatients Hospitalized for COVID-19

被引:9
|
作者
Giotta, Massimo [1 ]
Trerotoli, Paolo [2 ]
Palmieri, Vincenzo Ostilio [3 ]
Passerini, Francesca [3 ]
Portincasa, Piero [3 ]
Dargenio, Ilaria [1 ]
Mokhtari, Jihad [4 ]
Montagna, Maria Teresa [2 ]
De Vito, Danila [4 ]
机构
[1] Univ Bari Aldo Moro, Sch Specializat Med Stat & Biometry, Sch Med, I-70121 Bari, Italy
[2] Univ Bari Aldo Moro, Dept Interdisciplinary Med, I-70121 Bari, Italy
[3] Univ Bari Aldo Moro, Dept Biomed Sci & Human Oncol, I-70121 Bari, Italy
[4] Univ Bari Aldo Moro, Dept Basic Med Sci Neurosci & Sense Organs, Med Sch, I-70121 Bari, Italy
关键词
COVID-19; machine learning; clinical aspect; prognostic markers; haematochemical parameters; prediction;
D O I
10.3390/ijerph192013016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many studies have identified predictors of outcomes for inpatients with coronavirus disease 2019 (COVID-19), especially in intensive care units. However, most retrospective studies applied regression methods to evaluate the risk of death or worsening health. Recently, new studies have based their conclusions on retrospective studies by applying machine learning methods. This study applied a machine learning method based on decision tree methods to define predictors of outcomes in an internal medicine unit with a prospective study design. The main result was that the first variable to evaluate prediction was the international normalized ratio, a measure related to prothrombin time, followed by immunoglobulin M response. The model allowed the threshold determination for each continuous blood or haematological parameter and drew a path toward the outcome. The model's performance (accuracy, 75.93%; sensitivity, 99.61%; and specificity, 23.43%) was validated with a k-fold repeated cross-validation. The results suggest that a machine learning approach could help clinicians to obtain information that could be useful as an alert for disease progression in patients with COVID-19. Further research should explore the acceptability of these results to physicians in current practice and analyze the impact of machine learning-guided decisions on patient outcomes.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Association of Delirium and Depression with Respiratory and Outcome Measures in COVID-19 Inpatients
    Simonetti, Alessio
    Pais, Cristina
    Savoia, Vezio
    Cipriani, Maria Camilla
    Tosato, Matteo
    Janiri, Delfina
    Bernardi, Evelina
    Ferrara, Ottavia Marianna
    Margoni, Stella
    Kotzalidis, Georgios D.
    Chieffo, Daniela
    Fantoni, Massimo
    Liperoti, Rosa
    Landi, Francesco
    Bernabei, Roberto
    Sani, Gabriele
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (08):
  • [32] Comparison of Nurses' Workload and Multiple Organ Failure of Patients Hospitalized in the COVID-19 and Non-COVID-19 Intensive Care Units
    Moradi, Mohammad
    de Souza Nogueira, Lilia
    Hanifi, Nasrin
    IRANIAN JOURNAL OF NURSING AND MIDWIFERY RESEARCH, 2024, 29 (06) : 691 - 696
  • [33] Bacterial infections in COVID-19 patients hospitalized in intensive care unit
    Bravo, Felipe
    Galvan, Gonzalo
    Arancibia, Jose M.
    REVISTA CHILENA DE INFECTOLOGIA, 2022, 39 (02): : 224 - 226
  • [34] Effect of first application laboratory values on the prognosis of COVID-19 patients hospitalized in the intensive care unit
    Corapli, G.
    Cil, E.
    Tutak, A. S.
    Corapli, M.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2022, 26 (09) : 3361 - 3366
  • [35] Is It Possible To Predict Mortality Using Initial Data Of Adult Patients Hospitalized with COVID-19? A Mortality Prediction Model in the Early Phase of COVID-19
    Karabay, Oguz
    Inci, Mustafa Baran
    Ogutlu, Aziz
    Ekerbicer, Hasan
    Guclu, Ertugrul
    Dheir, Hamad
    Yaylaci, Selcuk
    Karabay, Meltem
    Guner, Necip Gokhan
    Koroglu, Mehmet
    Karacan, Alper
    Cokluk, Erdem
    Tomak, Yakup
    KONURALP TIP DERGISI, 2021, 13 (01): : 36 - 44
  • [36] Factors Associated With COVID-19 Non-vaccination in Adolescents Hospitalized Without COVID-19
    Sahni, Leila C.
    Price, Ashley M.
    Olson, Samantha M.
    Newhams, Margaret M.
    Pannaraj, Pia S.
    Maddux, Aline B.
    Halasa, Natasha B.
    Bline, Katherine E.
    Cameron, Melissa A.
    Schwartz, Stephanie P.
    Walker, Tracie C.
    Irby, Katherine
    Chiotos, Kathleen
    Nofziger, Ryan A.
    Mack, Elizabeth H.
    Smallcomb, Laura
    Bradford, Tamara T.
    Kamidani, Satoshi
    Tarquinio, Keiko M.
    Cvijanovich, Natalie Z.
    Schuster, Jennifer E.
    Bhumbra, Samina S.
    Levy, Emily R.
    Hobbs, Charlotte, V
    Cullimore, Melissa L.
    Coates, Bria M.
    Heidemann, Sabrina M.
    Gertz, Shira J.
    Kong, Michele
    Flori, Heidi R.
    Staat, Mary A.
    Zinter, Matt S.
    Hume, Janet R.
    Chatani, Brandon M.
    Gaspers, Mary G.
    Maamari, Mia
    Randolph, Adrienne G.
    Patel, Manish M.
    Boom, Julie A.
    JOURNAL OF THE PEDIATRIC INFECTIOUS DISEASES SOCIETY, 2023, 12 (01) : 29 - 35
  • [37] Lung Ultrasound to Predict Unfavorable Progress in Patients Hospitalized for COVID-19
    Ramos Hernandez, Cristina
    Botana Rial, Maribel
    Pazos Area, Luis Alberto
    Nunez Fernandez, Marta
    Perez Fernandez, Silvia
    Rubianes Gonzalez, Martin
    Crespo Casal, Manuel
    Fernandez Villar, Alberto
    ARCHIVOS DE BRONCONEUMOLOGIA, 2021, 57 : 47 - 54
  • [38] Clinical characteristics of non-intensive care unit COVID-19 patients in Saudi Arabia: A descriptive cross-sectional study
    Al-Omari, Awad
    Alhuqbani, Waad N.
    Zaidi, Abdul Rehman Z.
    Al-Subaie, Maha F.
    AlHindi, Alanoud M.
    Abogosh, Ahmed K.
    Alrasheed, Aljwhara K.
    Alsharafi, Aya A.
    Alhuqbani, Mohammed N.
    Salih, Samer
    Alhedaithy, Mogbil A.
    Abdulqawi, Rayid
    Ismail, Alaa F.
    Alhumaid, Saad
    Hamdan, Noura
    Saad, Fares
    Olhaye, Fahad A.
    Eltahir, Tarig A.
    Alomari, Mohammed
    Alshehery, Maied
    Yassiri, Aziz
    Al-Tawfiq, Jaffar A.
    Al Mutair, Abbas
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2020, 13 (11) : 1639 - 1644
  • [39] A nomogram to predict the risk of unfavourable outcome in COVID-19: a retrospective cohort of 279 hospitalized patients in Paris area
    Nguyen, Yann
    Corre, Felix
    Honsel, Vasco
    Curac, Sonja
    Zarrouk, Virginie
    Burtz, Catherine Paugam
    Weiss, Emmanuel
    Moyer, Jean-Denis
    Gauss, Tobias
    Gregory, Jules
    Bert, Frederic
    Trichet, Catherine
    Peoc'h, Katell
    Vilgrain, Valerie
    Rebours, Vinciane
    Fantin, Bruno
    Galy, Adrien
    ANNALS OF MEDICINE, 2020, 52 (07) : 367 - 375
  • [40] Application of Machine Learning in Hospitalized Patients with Severe COVID-19 Treated with Tocilizumab
    Ramon, Antonio
    Zaragoza, Marta
    Maria Torres, Ana
    Cascon, Joaquin
    Blasco, Pilar
    Milara, Javier
    Mateo, Jorge
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (16)