Machine-Learning Based Objective Function Selection for Community Detection

被引:0
|
作者
Bornstein, Asa [1 ]
Rubin, Amir [1 ,2 ]
Hendler, Danny [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, IL-8410501 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Comp Sci, IL-8410501 Beer Sheva, Israel
来源
CYBER SECURITY, CRYPTOLOGY, AND MACHINE LEARNING | 2022年 / 13301卷
关键词
Community detection; Complex networks; Machine learning; Overlapping community detection; Supervised learning; GENETIC ALGORITHM; PREDICTION;
D O I
10.1007/978-3-031-07689-3_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
NECTAR, a Node-centric ovErlapping Community deTection AlgoRithm, presented by Cohen et al., chooses dynamically between two objective functions which to optimize, based on the network on which it is invoked. It was shown that this approach outperforms six state-of-the-art algorithms for overlapping community detection. In this work, we present NECTAR-ML, an extension of the NECTAR algorithm that uses a machine-learning based model for automating the selection of the objective function, trained and evaluated on a dataset of 15,755 synthetic and 7 real-world networks. Our analysis shows that in approximately 90% of the cases our model was able to successfully select the correct objective function. We conducted a competitive analysis of NECTAR and NECTAR-ML. NECTAR-ML was shown to significantly outperform NECTAR's ability to select the best objective function. We also conducted a competitive analysis of NECTAR-ML and two additional state-of-the-art multi-objective evolutionary community detection algorithms. NECTAR-ML outperformed both algorithms in terms of average detection quality. Multi-objective evolutionary algorithms are considered to be the most popular approach to solve multi-objective optimization problems and the fact that NECTAR-ML significantly outperforms them demonstrates the effectiveness of ML-based objective function selection.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 50 条
  • [31] Detection of cognitive impairment using a machine-learning algorithm
    Youn, Young Chul
    Choi, Seong Hye
    Shin, Hae-Won
    Kim, Ko Woon
    Jang, Jae-Won
    Jung, Jason J.
    Hsiung, Ging-Yuek Robin
    Kim, SangYun
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2018, 14 : 2939 - 2945
  • [32] Machine-Learning based IoT Data Caching
    Pahl, Marc-Oliver
    Liebald, Stefan
    Wuestrich, Lars
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019,
  • [33] Phishing detection based on machine learning and feature selection methods
    Almseidin M.
    Abu Zuraiq A.M.
    Al-kasassbeh M.
    Alnidami N.
    International Journal of Interactive Mobile Technologies, 2019, 13 (12) : 71 - 183
  • [34] Feature Selection Approach for Phishing Detection Based on Machine Learning
    Wei, Yi
    Sekiya, Yuji
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON APPLIED CYBER SECURITY (ACS) 2021, 2022, 378 : 61 - 70
  • [35] Machine-learning based multi-objective optimization of helically coiled tube flocculators for water treatment
    Ramesh, Ebrahim
    Jalali, Alireza
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 197 : 931 - 944
  • [36] A machine-learning phase classification scheme for anomaly detection in signals with periodic characteristics
    Ahrens, Lia
    Ahrens, Julian
    Schotten, Hans D.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2019, 2019 (1)
  • [37] Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
    Lee, Jaehyeong
    Jang, Hyuk
    Ha, Sungmin
    Yoon, Yourim
    MATHEMATICS, 2021, 9 (21)
  • [38] An integrated machine-learning model for soil category classification based on CPT
    Bai, Ruihan
    Shen, Feng
    Zhang, Zhiping
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (03) : 2121 - 2146
  • [39] Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors
    Park, Ingyu
    Lee, Kyeongho
    Bishayee, Kausik
    Jeon, Hong Jin
    Lee, Hyosang
    Lee, Unjoo
    EXPERIMENTAL NEUROBIOLOGY, 2019, 28 (01) : 54 - 61
  • [40] A Study on the Development of Machine-Learning Based Load Transfer Detection Algorithm for Distribution Planning
    Kim, Jun-Hyeok
    Lee, Byung-Sung
    Kim, Chul-Hwan
    ENERGIES, 2020, 13 (17)