The human cerebellum has almost 80% of the surface area of the neocortex

被引:124
作者
Sereno, Martin, I [1 ,2 ,3 ]
Diedrichsen, Jorn [4 ,5 ]
Tachrount, Mohamed [6 ,7 ]
Testa-Silva, Guilherme [8 ]
d'Arceuil, Helen [9 ]
De Zeeuw, Chris [10 ]
机构
[1] UCL, Expt Psychol, London WC1H 0AP, England
[2] Birkbeck Univ London, Dept Psychol Sci, London WC1E 7HX, England
[3] San Diego State Univ, Dept Psychol, San Diego, CA 92182 USA
[4] UCL, Inst Cognit Neurosci, London WC1N 3AR, England
[5] Univ Western Ontario, Dept Comp Sci & Stat, London, ON N6A 3K7, Canada
[6] UCL, UCL Inst Neurol, London WC1N 1PJ, England
[7] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[8] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[9] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[10] Netherlands Inst Neurosci, Dept Neurosci, NL-3000 CA Amsterdam, Netherlands
基金
加拿大健康研究院;
关键词
cerebellum; surface area; computational; unfolding; evolution; GRANULE CELL; HEMISPHERES; PROJECTIONS; LAYERS; RAT;
D O I
10.1073/pnas.2002896117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. It was computationally reconstructed for the first time to the level of all individual folia from multicontrast high-resolution postmortem MRI scans. Its total shrinkage-corrected surface area (1,590 cm(2)) was larger than expected or previously reported, equal to 78% of the total surface area of the human neocortex. The unfolded and flattened surface comprised a narrow strip 10 cm wide but almost 1 m long. By applying the same methods to the neocortex and cerebellum of the macaque monkey, we found that its cerebellum was relatively much smaller, approximately 33% of the total surface area of its neocortex. This suggests a prominent role for the cerebellum in the evolution of distinctively human behaviors and cognition.
引用
收藏
页码:19538 / 19543
页数:6
相关论文
共 22 条
[1]  
ANDERSSON G, 1978, EXP BRAIN RES, V32, P565
[2]  
[Anonymous], 2015, F1000Research, DOI [DOI 10.12688/F1000RESEARCH.6210.1, 10.12688/f1000research.6210.1]
[3]   Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules [J].
Balsters, J. H. ;
Cussans, E. ;
Diedrichsen, J. ;
Phillips, K. A. ;
Preuss, T. M. ;
Rilling, J. K. ;
Ramnani, N. .
NEUROIMAGE, 2010, 49 (03) :2045-2052
[4]   Rapid Evolution of the Cerebellum in Humans and Other Great Apes [J].
Barton, Robert A. ;
Venditti, Chris .
CURRENT BIOLOGY, 2014, 24 (20) :2440-2444
[5]  
Bazin P. L., 2014, NEUROIMAGING TOOLS R
[6]   Surface-based characteristics of the cerebellar cortex visualized with ultra-high field MRI [J].
Boillat, Yohan ;
Bazin, Pierre-Louis ;
O'Brien, Kieran ;
Fartaria, Mario Joao ;
Bonnier, Guillaume ;
Krueger, Gunnar ;
van der Zwaag, Wietske ;
Granziera, Cristina .
NEUROIMAGE, 2018, 172 :1-8
[7]   CONGRUENCE OF SPATIAL-ORGANIZATION OF TACTILE PROJECTIONS TO GRANULE CELL AND PURKINJE-CELL LAYERS OF CEREBELLAR HEMISPHERES OF THE ALBINO-RAT - VERTICAL ORGANIZATION OF CEREBELLAR CORTEX [J].
BOWER, JM ;
WOOLSTON, DC .
JOURNAL OF NEUROPHYSIOLOGY, 1983, 49 (03) :745-766
[8]   The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging [J].
Buckner, Randy L. .
NEURON, 2013, 80 (03) :807-815
[9]   An approach to high resolution diffusion tensor imaging in fixed primate brain [J].
D'Arceuil, Helen E. ;
Westmoreland, Susan ;
de Crespigny, Alex J. .
NEUROIMAGE, 2007, 35 (02) :553-565
[10]   Surface-Based Display of Volume-Averaged Cerebellar Imaging Data [J].
Diedrichsen, Joern ;
Zotow, Ewa .
PLOS ONE, 2015, 10 (07)