FIRST EXIT TIME OF A LEVY FLIGHT FROM A BOUNDED REGION IN RN

被引:0
作者
Kim, Yoora [1 ]
Koprulu, Irem [2 ]
Shroff, Ness B. [2 ,3 ]
机构
[1] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
[2] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA
基金
新加坡国家研究基金会;
关键词
Levy flight; first exit time; first passage time; bounded region;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we characterize the mean and the distribution of the first exit time of a Levy flight from a bounded region in N-dimensional spaces. We characterize tight upper and lower bounds on the tail distribution of the first exit time, and provide the exact asymptotics of the mean first exit time for a given range of step-length distribution parameters.
引用
收藏
页码:649 / 664
页数:16
相关论文
共 13 条
  • [1] Andersen ES, 1953, SKAND AKTUARIETIDSKR, V36, P123
  • [2] Properties of Levy flights on an interval with absorbing boundaries
    Buldyrev, SV
    Gitterman, M
    Havlin, S
    Kazakov, AY
    da Luz, MGE
    Raposo, EP
    Stanley, HE
    Viswanathan, GM
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 302 (1-4) : 148 - 161
  • [3] Average time spent by Levy flights and walks on an interval with absorbing boundaries
    Buldyrev, SV
    Havlin, S
    Kazakov, AY
    da Luz, MGE
    Raposo, EP
    Stanley, HE
    Viswanathan, GM
    [J]. PHYSICAL REVIEW E, 2001, 64 (04): : 11 - 411081
  • [4] Heat kernel estimates for the Dirichlet fractional Laplacian
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) : 1307 - 1329
  • [5] Levy-Brownian motion on finite intervals:: Mean first passage time analysis -: art. no. 046104
    Dybiec, B
    Gudowska-Nowak, E
    Hänggi, P
    [J]. PHYSICAL REVIEW E, 2006, 73 (04): : 1 - 9
  • [6] ON THE BELL-SHAPE OF STABLE DENSITIES
    GAWRONSKI, W
    [J]. ANNALS OF PROBABILITY, 1984, 12 (01) : 230 - 242
  • [7] Getoor R. K., 1961, T AM MATH SOC, V101, P75, DOI DOI 10.2307/1993412
  • [8] The spectrum of the fractional Laplacian and First-Passage-Time statistics
    Katzav, E.
    Adda-Bedia, M.
    [J]. EPL, 2008, 83 (03)
  • [9] THE GROWTH OF RANDOM-WALKS AND LEVY PROCESSES
    PRUITT, WE
    [J]. ANNALS OF PROBABILITY, 1981, 9 (06) : 948 - 956
  • [10] Area coverage of radial Levy flights with periodic boundary conditions
    Vahabi, Mahsa
    Schulz, Johannes H. P.
    Shokri, Babak
    Metzler, Ralf
    [J]. PHYSICAL REVIEW E, 2013, 87 (04):