Factorization Theory and Decompositions of Modules

被引:37
作者
Baeth, Nicholas R. [1 ]
Wiegand, Roger [2 ]
机构
[1] Cent Missouri State Univ, Dept Math & Comp Sci, Warrensburg, MO 64093 USA
[2] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
关键词
DIRECT-SUM DECOMPOSITIONS; LOCAL-RINGS; KRULL DOMAINS; NUMBER-THEORY; MONOIDS;
D O I
10.4169/amer.math.monthly.120.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. It often happens that M-1 circle plus center dot center dot center dot circle plus M-s congruent to N-1 circle plus center dot center dot center dot circle plus N-t for indecomposable R-modules M-1, . . . , M-s and N-1, . . . , N-t with s not equal t. This behavior can be captured by studying the commutative monoid {[M] vertical bar M is an R-module} of isomorphism classes of R-modules with operation given by [M] + [N] = [M circle plus N]. In this mostly self-contained exposition, we introduce the reader to the interplay between the the study of direct-sum decompositions of modules and the study of factorizations in integral domains.
引用
收藏
页码:3 / 34
页数:32
相关论文
共 38 条
[21]  
Geroldinger A., 2006, Pure and Applied Mathematics, V278
[22]  
GILMER R, 1984, CHICAGO LECT MATH
[23]  
Halter-Koch F., 1998, MONOGRAPHS TXB PURE, V211
[24]  
Halter-Koch F., 1990, EXPO MATH, V8, P27
[25]   Indecomposable modules of large rank over Cohen-Macaulay local rings [J].
Hassler, Wolfgang ;
Karr, Ryan ;
Klingler, Lee ;
Wiegand, Roger .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (03) :1391-1406
[26]   Geometric notes on monoids [J].
Kainrath, F ;
Lettl, G .
SEMIGROUP FORUM, 2000, 61 (02) :298-302
[27]  
Kainrath F., 1999, C MATH, V80, P23
[28]   Elasticities of Krull domains with finite divisor class group [J].
Kattchee, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 :171-185
[29]   ON MONOIDS OF FINITE REAL CHARACTER [J].
KRAUSE, U .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (03) :546-554
[30]  
LECH C, 1986, LECT NOTES MATH, V1183, P241