Factorization Theory and Decompositions of Modules

被引:37
作者
Baeth, Nicholas R. [1 ]
Wiegand, Roger [2 ]
机构
[1] Cent Missouri State Univ, Dept Math & Comp Sci, Warrensburg, MO 64093 USA
[2] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
关键词
DIRECT-SUM DECOMPOSITIONS; LOCAL-RINGS; KRULL DOMAINS; NUMBER-THEORY; MONOIDS;
D O I
10.4169/amer.math.monthly.120.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. It often happens that M-1 circle plus center dot center dot center dot circle plus M-s congruent to N-1 circle plus center dot center dot center dot circle plus N-t for indecomposable R-modules M-1, . . . , M-s and N-1, . . . , N-t with s not equal t. This behavior can be captured by studying the commutative monoid {[M] vertical bar M is an R-module} of isomorphism classes of R-modules with operation given by [M] + [N] = [M circle plus N]. In this mostly self-contained exposition, we introduce the reader to the interplay between the the study of direct-sum decompositions of modules and the study of factorizations in integral domains.
引用
收藏
页码:3 / 34
页数:32
相关论文
共 38 条
[1]   RATIONAL ELASTICITY OF FACTORIZATIONS IN KRULL DOMAINS [J].
ANDERSON, DD ;
ANDERSON, DF ;
CHAPMAN, ST ;
SMITH, WW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (01) :37-43
[2]  
[Anonymous], 2001, GRADUATE TEXTS MATH
[3]  
[Anonymous], CAMBRIDGE STUDIES AD
[4]  
[Anonymous], 1993, CAMBRIDGE STUDIES AD
[5]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[6]  
Baeth N. R, J COMMUT AL IN PRESS
[7]   A Krull-Schmidt theorem for one-dimensional rings of finite Cohen-Macaulay type [J].
Baeth, Nicholas R. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 208 (03) :923-940
[8]   MONOIDS OF TORSION-FREE MODULES OVER RINGS WITH FINITE REPRESENTATION TYPE [J].
Baeth, Nicholas R. ;
Luckas, Melissa R. .
JOURNAL OF COMMUTATIVE ALGEBRA, 2011, 3 (04) :439-458
[9]   Direct Sum Decompositions Over Two-Dimensional Local Domains [J].
Baeth, Nicholas R. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (05) :1469-1480
[10]   Factorizations of Algebraic Integers, Block Monoids, and Additive Number Theory [J].
Baginski, Paul ;
Chapman, Scott T. .
AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (10) :901-920