Linear groups definable in o-minimal structures

被引:32
作者
Peterzil, Y [1 ]
Pillay, A
Starchenko, S
机构
[1] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jabr.2001.8861
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study subgroups G of GL(n, R) definable in o-minimal expansions M = (R, +, (.),....) of a real closed field R. We prove several results such as: (a) G can be defined using just the field structure on R together with, if necessary, power functions, or an exponential function definable in M. (b) If G has no infinite, normal, definable abelian subgroup, then G is semialgebraic. We also characterize the definably simple groups definable in o-minimal structures as those groups elementarily equivalent to simple Lie groups, and we give a proof of the Kneser-Tits conjecture for real closed fields. (C) 2002 Elsevier Science.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 13 条