Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS2

被引:68
|
作者
Zhang, Fu [1 ,2 ,3 ]
Momeni, Kasra [1 ,2 ,4 ]
Abu AlSaud, Mohammed [1 ,2 ,3 ]
Azizi, Amin [1 ,2 ,3 ]
Hainey, Mel F., Jr. [1 ,2 ]
Redwing, Joan M. [1 ,2 ,3 ]
Chen, Long-Qing [1 ,2 ]
Alem, Nasim [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[3] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
[4] Louisiana Tech Univ, Dept Mech Engn, Ruston, LA 71272 USA
来源
2D MATERIALS | 2017年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
powder vapor transport; transition metal dichalcogenide; numerical simulations; growth mechanism; LAYER MOS2; LARGE-AREA; ATOMIC LAYERS; PHASE GROWTH; THIN-LAYERS; EVOLUTION; FILMS; MONO; SHAPE;
D O I
10.1088/2053-1583/aa5b01
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among post-graphene two dimensional (2D) materials, transition metal dichalcogenides (TMDs, such as MoS2) have attracted significant attention due to their superior properties for potential electronic, optoelectronic and energy applications. Scalable and controllable powder vapor transport (PVT) methods have been developed to synthesize 2D MoS2 with controllable morphologies (i.e. horizontal and vertical), yet the growth mechanism for the transition from horizontal to vertical orientation is not clearly understood. Here, we combined experimental and numerical modeling studies to investigate the key growth parameters that govern the morphology of 2D materials. The transition from vertical to horizontal growth is achieved by controlling the magnitude and distribution of the precursor concentration by placing the substrate at different orientations and locations relative to the source. We have also shown that the density of as-grown nanostructures can be controlled by the local precursor-containing gas flow rate. This study demonstrates the possibility for engineering the morphology of 2D materials by controlling the concentration of precursors and flow profiles, and provides a new path for controllable growth of 2D TMDs for various applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors
    Pei, Yongfeng
    Chen, Rui
    Xu, Hang
    He, Dong
    Jiang, Changzhong
    Li, Wenqing
    Xiao, Xiangheng
    NANO RESEARCH, 2021, 14 (06) : 1819 - 1839
  • [42] Large-Scale Synthesis of a Uniform Film of Bilayer MoS2 on Graphene for 2D Heterostructure Phototransistors
    Chen, Chuanmeng
    Peng, Zhihong
    Feng, Yiyu
    Yue, Yuchen
    Qin, Chengqun
    Zhang, Daihua
    Feng, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (29) : 19004 - 19011
  • [43] Pattern Stimulated CVD Growth of 2D MoS2
    Xu, Zhuhua
    Lv, Yanfei
    Li, Jingzhou
    Wei, Guodan
    Zhao, Shichao
    CHEMISTRYSELECT, 2020, 5 (22): : 6709 - 6714
  • [44] New Class of Electrocatalysts Based on 2D Transition Metal Dichalcogenides in Ionic Liquid
    Majidi, Leily
    Yasaei, Poya
    Warburton, Robert E.
    Fuladi, Shadi
    Cavin, John
    Hu, Xuan
    Hemmat, Zahra
    Cho, Sung Beom
    Abbasi, Pedram
    Voros, Marton
    Cheng, Lei
    Sayahpour, Baharak
    Bolotin, Igor L.
    Zapol, Peter
    Greeley, Jeffrey
    Klie, Robert F.
    Mishra, Rohan
    Khalili-Araghi, Fatemeh
    Curtiss, Larry A.
    Salehi-Khojin, Amin
    ADVANCED MATERIALS, 2019, 31 (04)
  • [45] Multilayer MoS2 growth by metal and metal oxide sulfurization
    Heyne, M. H.
    Chiappe, D.
    Meersschaut, J.
    Nuytten, T.
    Conard, T.
    Bender, H.
    Huyghebaert, C.
    Radu, I. P.
    Caymax, M.
    de Marneffe, J. -F.
    Neyts, E. C.
    De Gendt, S.
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (06) : 1295 - 1304
  • [46] Structural and electrical analysis of epitaxial 2D/3D vertical heterojunctions of monolayer MoS2 on GaN
    O'Regan, Terrance P.
    Ruzmetov, Dmitry
    Neupane, Mahesh R.
    Burke, Robert A.
    Herzing, Andrew A.
    Zhang, Kehao
    Birdwell, A. Glen
    Taylor, DeCarlos E.
    Byrd, Edward F. C.
    Walck, Scott D.
    Davydov, Albert V.
    Robinson, Joshua A.
    Ivanov, Tony G.
    APPLIED PHYSICS LETTERS, 2017, 111 (05)
  • [47] Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): An electrochemical impedance spectroscopic investigation
    Loo, Adeline Huiling
    Bonanni, Alessandra
    Sofer, Zdenek
    Pumera, Martin
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 50 : 39 - 42
  • [48] From Light to Dark: Dancing with Electrons in Colloidal 2D MoS2 Nanosheets
    Chen, Bo-An
    Dominique, Nathaniel L.
    Kipkorir, Anthony
    Camden, Jon P.
    Ptasinska, Sylwia
    Kamat, Prashant V.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (18): : 4920 - 4927
  • [49] High-Mobility MoS2 Directly Grown on Polymer Substrate with Kinetics-Controlled Metal-Organic Chemical Vapor Deposition
    Mun, Jihun
    Park, Hyeji
    Park, Jaeseo
    Joung, DaeHwa
    Lee, Seoung-Ki
    Leem, Juyoung
    Myoung, Jae-Min
    Park, Jonghoo
    Jeong, Soo-Hwan
    Chegal, Won C.
    Nam, SungWoo
    Kang, Sang-Woo
    ACS APPLIED ELECTRONIC MATERIALS, 2019, 1 (04) : 608 - 616
  • [50] Promising optoelectronic response of 2D monolayer MoS2: A first principles study
    Rai, D. P.
    Vu, Tuan V.
    Laref, Amel
    Joshi, H.
    Patra, P. K.
    CHEMICAL PHYSICS, 2020, 538