Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS2

被引:68
|
作者
Zhang, Fu [1 ,2 ,3 ]
Momeni, Kasra [1 ,2 ,4 ]
Abu AlSaud, Mohammed [1 ,2 ,3 ]
Azizi, Amin [1 ,2 ,3 ]
Hainey, Mel F., Jr. [1 ,2 ]
Redwing, Joan M. [1 ,2 ,3 ]
Chen, Long-Qing [1 ,2 ]
Alem, Nasim [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[3] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
[4] Louisiana Tech Univ, Dept Mech Engn, Ruston, LA 71272 USA
来源
2D MATERIALS | 2017年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
powder vapor transport; transition metal dichalcogenide; numerical simulations; growth mechanism; LAYER MOS2; LARGE-AREA; ATOMIC LAYERS; PHASE GROWTH; THIN-LAYERS; EVOLUTION; FILMS; MONO; SHAPE;
D O I
10.1088/2053-1583/aa5b01
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among post-graphene two dimensional (2D) materials, transition metal dichalcogenides (TMDs, such as MoS2) have attracted significant attention due to their superior properties for potential electronic, optoelectronic and energy applications. Scalable and controllable powder vapor transport (PVT) methods have been developed to synthesize 2D MoS2 with controllable morphologies (i.e. horizontal and vertical), yet the growth mechanism for the transition from horizontal to vertical orientation is not clearly understood. Here, we combined experimental and numerical modeling studies to investigate the key growth parameters that govern the morphology of 2D materials. The transition from vertical to horizontal growth is achieved by controlling the magnitude and distribution of the precursor concentration by placing the substrate at different orientations and locations relative to the source. We have also shown that the density of as-grown nanostructures can be controlled by the local precursor-containing gas flow rate. This study demonstrates the possibility for engineering the morphology of 2D materials by controlling the concentration of precursors and flow profiles, and provides a new path for controllable growth of 2D TMDs for various applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Two-Step Conversion of Metal and Metal Oxide Precursor Films to 2D Transition Metal Dichalcogenides and Heterostructures
    Altvater, Michael
    Muratore, Christopher
    Snure, Michael
    Glavin, Nicholas R.
    SMALL, 2024,
  • [32] Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides
    Rasmussen, Filip A.
    Thygesen, Kristian S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (23) : 13169 - 13183
  • [33] Controlled Sulfurization Process for the Synthesis of Large Area MoS2 Films and MoS2/WS2 Heterostructures
    Chiappe, Daniele
    Asselberghs, Inge
    Sutar, Surajit
    Iacovo, Serena
    Afanas'ev, Valeri
    Stesmans, Andre
    Balaji, Yashwanth
    Peters, Lisanne
    Heyne, Markus
    Mannarino, Manuel
    Vandervorst, Wilfried
    Sayan, Safak
    Huyghebaert, Cedric
    Caymax, Matty
    Heyns, Marc
    De Gendt, Stefan
    Radu, Iuliana
    Thean, Aaron
    ADVANCED MATERIALS INTERFACES, 2016, 3 (04):
  • [34] Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor
    Zhao, Yuxi
    Song, Jeong-Gyu
    Ryu, Gyeong Hee
    Ko, Kyung Yong
    Woo, Whang Je
    Kim, Youngjun
    Kim, Donghyun
    Lim, Jun Hyung
    Lee, Sunhee
    Lee, Zonghoon
    Park, Jusang
    Kim, Hyungjun
    NANOSCALE, 2018, 10 (19) : 9338 - 9345
  • [35] 2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1-x)Se2x Monolayers
    Mann, John
    Ma, Quan
    Odenthal, Patrick M.
    Isarraraz, Miguel
    Le, Duy
    Preciado, Edwin
    Barroso, David
    Yamaguchi, Koichi
    Palacio, Gretel von Son
    Andrew Nguyen
    Tai Tran
    Wurch, Michelle
    Ariana Nguyen
    Klee, Velveth
    Bobek, Sarah
    Sun, Dezheng
    Heinz, Tony F.
    Rahman, Talat S.
    Kawakami, Roland
    Bartels, Ludwig
    ADVANCED MATERIALS, 2014, 26 (09) : 1399 - 1404
  • [36] 3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides
    Guo, Yuzheng
    Liu, Dameng
    Robertson, John
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (46) : 25709 - 25715
  • [37] Clean Transfer of 2D Transition Metal Dichalcogenides Using Cellulose Acetate for Atomic Resolution Characterizations
    Zhang, Tianyi
    Fujisawa, Kazunori
    Granzier-Nakajima, Tomotaroh
    Zhang, Fu
    Lin, Zhong
    Kahn, Ethan
    Perea-Lopez, Nestor
    Elias, Ana Laura
    Yeh, Yin-Ting
    Terrones, Mauricio
    ACS APPLIED NANO MATERIALS, 2019, 2 (08): : 5320 - 5328
  • [38] Prospect of Large Scale 2D Transition Metal Dichalcogenides Nanophotonics for Optical Communications
    Ling, Zhi-Peng
    Yang, Rui
    Chai, Jian-Wei
    Wang, Shi-Jie
    Tong, Yu
    Zhou, Qian
    Gong, Xiao
    Chi, Dong-Zhi
    Ang, Kah-Wee
    2015 IEEE INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2015), 2015,
  • [39] Gas-Phase "Prehistory" and Molecular Precursors in Monolayer Metal Dichalcogenides Synthesis: The Case of MoS2
    Lei, Jincheng
    Xie, Yu
    Yakobson, Boris, I
    ACS NANO, 2021, 15 (06) : 10525 - 10531
  • [40] 2D Transition Metal Dichalcogenides-Based Electrocatalysts for Hydrogen Evolution Reaction
    Mondal, Aniruddha
    Vomiero, Alberto
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (52)