Separable equivalence of rings and symmetric algebras

被引:8
作者
Kadison, Lars [1 ]
机构
[1] Univ Penn, Dept Math, David Rittenhouse Lab, 209 S 33rd St, Philadelphia, PA 19104 USA
关键词
HECKE ALGEBRAS;
D O I
10.1112/blms.12233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue a study of separable equivalence from (Kadison, Comptes Rendus Math. Reports Acad. Sci. Canada, 15 (1993) 223-228; Hokkaido Math. J. 24 (1995) 527-549). We prove that symmetric separable equivalent rings A and B are linked by a Frobenius bimodule APB such that A is P-separable over B. Separably equivalent rings are linked by a biseparable bimodule P. In addition, the ring monomorphism AEndPB is split, separable Frobenius. It is observed that left and right finite projective bimodules over symmetric algebras are Frobenius bimodules; twisted by the Nakayama automorphisms if over Frobenius algebras.
引用
收藏
页码:344 / 352
页数:9
相关论文
共 16 条
[1]  
Anderson F. W., 1992, GRADUATE TEXTS MATH, V13
[2]   The representation dimension of Hecke algebras and symmetric groups [J].
Bergh, Petter Andreas ;
Erdmann, Karin .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :2503-2521
[3]   Are biseparable extensions Frobenius? [J].
Caenepeel, S ;
Kadison, L .
K-THEORY, 2001, 24 (04) :361-383
[4]  
Iovanov M. C., 2017, ARXIV170500762
[5]  
Kadison L., 1993, CR ACAD SCI I-MATH, V15, P223
[6]  
Kadison L., 1999, University Lecture Series, V14
[7]  
Kadison L., 1995, Hokkaido Math. J, V24, P527, DOI [10.14492/hokmj/1380892607, DOI 10.14492/HOKMJ/1380892607]
[8]  
Kadison L., 1999, Algebr. Represent. Theory, V2, P397, DOI [10.1023/A:1009974918794, DOI 10.1023/A:1009974918794]
[9]  
Kadison L., 1991, PREPRINT
[10]  
LAM TY, 1999, GRAD TEXT M, V189, pR7