Orthogonal trigonometric polynomials: Riemann-Hilbert analysis and relations with OPUC

被引:3
作者
Du, Zhihua [1 ]
Du, Jinyuan [2 ]
机构
[1] Jinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
orthogonal trigonometric polynomials; Riemann-Hilbert approach; orthogonal polynomials on the unit circle; Christoffel-Darboux; recurrence; zeros; CMV MATRICES; JACOBI; ASYMPTOTICS;
D O I
10.3233/ASY-2012-1096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the theory of orthogonal trigonometric polynomials (OTPs). We obtain asymptotics of OTPs with positive and analytic weight functions by Riemann-Hilbert approach and find that they have relations with orthogonal polynomials on the unit circle (OPUC). By the relations and the theory of OPUC, we also get four-terms recurrent formulae, Christoffel-Darboux formula and some algebraic and asymptotic properties of zeros for orthogonal trigonometric polynomials.
引用
收藏
页码:87 / 132
页数:46
相关论文
共 30 条
[1]  
[Anonymous], 2005, AMS Colloquium Series
[2]   Sharp constants for rational approximations of analytic functions [J].
Aptekarev, AI .
SBORNIK MATHEMATICS, 2002, 193 (1-2) :1-72
[3]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[4]   Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle [J].
Cantero, MJ ;
Moral, L ;
Velázquez, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :29-56
[5]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[6]  
Deift P, 1997, INT MATH RES NOTICES, V1997, P285
[7]  
Deift P., 2000, ORTHOGONAL POLYNOMIA
[8]   ASYMPTOTICS FOR THE PAINLEVE-II EQUATION [J].
DEIFT, PA ;
ZHOU, X .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (03) :277-337
[9]  
Du J., 1989, CHINESE J NUMER MATH, V11, P9
[10]  
Du JY, 2009, MATH COMPUT, V78, P891