ON THE AL-SALAM-CARLITZ ORTHOGONAL q-POLYNOMIALS

被引:0
作者
Kheriji, L. [1 ]
机构
[1] Inst Super Sci Appl & Technol Gabes, Gobes 6072, Tunisia
关键词
Orthogonal q-polynomials; q-difference operator; q-integral representation; discrete measure;
D O I
10.2989/16073606.2012.697263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the q-integral representation for the Rogers-Szego polynomials to highlight a discrete measure of the Al-Salam-Carlitz form U(a, q) associated with the Al-SAlam-Carlitz polynomials of the first kind {U-n((a)) (.; q)}(n>0) in the positive definite case a < 0, 0 < q < 1 and a q-integral representation of the Al-SAlam-Carlitz polynomial of the second kind V-n((a)) (.; q) for a > 0, 0 < q < 1.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 12 条
[1]   SOME ORTHOGONAL Q-POLYNOMIALS [J].
ALSALAM, WA ;
CARLITZ, L .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (1-2) :47-&
[2]  
[Anonymous], 2005, Classical and Quantum Orthogonal Polynomials in One Variable
[3]  
[Anonymous], 1994, Methods and Applications of Analysis, DOI 10.4310/MAA.1994.v1.n2.a3
[4]  
Chihara Theodore S, 2011, An introduction to orthogonal polynomials
[5]  
Gasper G., 1990, Basic Hypergeometric Series, volume 35 of Encyclopedia of Mathematics and its Applications
[6]  
Hahn W., 1949, MATH NACHR, V2, P4, DOI 10.1002/mana.19490020103
[7]  
Jackson F.H., 1910, Q. J. Pure Appl. Math, V41, P193, DOI DOI 10.1017/S0080456800002751
[8]   The Hq-classical orthogonal polynomials [J].
Khériji, L ;
Maroni, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 71 (01) :49-115
[9]  
Koekoek R., 1998, 9817 DELFT U TECHN T
[10]   VARIATIONS AROUND CLASSICAL ORTHOGONAL POLYNOMIALS - CONNECTED PROBLEMS [J].
MARONI, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 48 (1-2) :133-155