The effect of fructose derived carbon shells on the plasmon resonance and stability of silver nanoparticles

被引:12
|
作者
Heckel, John C. [1 ]
Farhan, Fatimah F. [1 ]
Chumanov, George [1 ]
机构
[1] Clemson Univ, Dept Chem, HL Hunter Lab, Clemson, SC 29634 USA
关键词
core shell; silver nanoparticle; carbon nanoparticle; hydrothermal; fructose;
D O I
10.1007/s00396-008-1929-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanoparticles between 10 and 50 nm in diameter and carbon shells of various thickness around silver nanoparticles were synthesized by the hydrothermal reaction of fructose. The effect of the carbon shells on the plasmon resonance of the silver nanoparticles and their stability in sodium chloride solutions was investigated. The shell thickness can be adjusted to have insignificant damping of the plasmon resonance and provide stabilization of the particles in solutions with high ionic strength. Hydrazine-carbonyl cross-linking reactions were performed to link fluorescent dye molecules to carbonyl groups on the carbon shell surface.
引用
收藏
页码:1545 / 1552
页数:8
相关论文
共 50 条
  • [21] Effect of oxygen adsorption on the surface plasmon resonance of oxide-supported silver nanoparticles
    D. S. Afanasev
    V. F. Anufrienko
    S. F. Ruzankin
    T. V. Larina
    N. I. Kuznetsova
    V. I. Bukhtiyarov
    Doklady Physical Chemistry, 2011, 436 : 23 - 25
  • [22] Effect of localized surface plasmon resonance on dispersion stability of copper sulfide nanoparticles
    Kwon, Young-Tae
    Lim, Gu-Dam
    Kim, Seil
    Ryu, Seung Han
    Lim, Hyo-Ryoung
    Choa, Yong-Ho
    APPLIED SURFACE SCIENCE, 2019, 477 : 204 - 210
  • [23] Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles
    Malinsky, Michelle Duval
    Kelly, K. Lance
    Schatz, George C.
    Van Duyne, Richard P.
    Journal of Physical Chemistry B, 2001, 105 (12): : 2343 - 2350
  • [24] Effect of oxygen adsorption on the surface plasmon resonance of oxide-supported silver nanoparticles
    Afanasev, D. S.
    Anufrienko, V. F.
    Ruzankin, S. F.
    Larina, T. V.
    Kuznetsova, N. I.
    Bukhtiyarov, V. I.
    DOKLADY PHYSICAL CHEMISTRY, 2011, 436 : 23 - 25
  • [25] Shift of plasmon resonance in silver nanoparticles: effect of magnetic field pre-treatment
    Redko, Roman
    Shvalagin, Vitaliy
    Milenin, Grigorii
    Redko, Svitlana
    Sarikov, Andrey
    MATERIALS RESEARCH EXPRESS, 2024, 11 (10)
  • [26] Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles
    Malinsky, MD
    Kelly, KL
    Schatz, GC
    Van Duyne, RP
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (12): : 2343 - 2350
  • [27] Silver Metallic Nanoparticles with Surface Plasmon Resonance: Synthesis and Characterizations
    M. Ider
    K. Abderrafi
    A. Eddahbi
    S. Ouaskit
    A. Kassiba
    Journal of Cluster Science, 2017, 28 : 1051 - 1069
  • [28] Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects
    Raza, Soren
    Yan, Wei
    Stenger, Nicolas
    Wubs, Martijn
    Mortensen, N. Asger
    OPTICS EXPRESS, 2013, 21 (22): : 27344 - 27355
  • [29] Size and Temperature Effects on the Surface Plasmon Resonance in Silver Nanoparticles
    Yeshchenko, Oleg A.
    Dmitruk, Igor M.
    Alexeenko, Alexandr A.
    Kotko, Andriy V.
    Verdal, James
    Pinchuk, Anatoliy O.
    PLASMONICS, 2012, 7 (04) : 685 - 694
  • [30] Surface Plasmon Resonance of Silver Nanoparticles: Synthesis, Characterization, and Applications
    Ismail, Rusul K.
    Mubarak, Tahseen H.
    Al-Haddad, Raad M. S.
    JOURNAL OF BIOCHEMICAL TECHNOLOGY, 2019, 10 (02) : 62 - 64