Network-based approaches for drug response prediction and targeted therapy development in cancer

被引:20
作者
Dorel, Mathurin [1 ,2 ,3 ,4 ]
Barillot, Emmanuel [1 ,2 ,3 ]
Zinovyev, Andrei [1 ,2 ,3 ]
Kuperstein, Irma [1 ,2 ,3 ]
机构
[1] Inst Curie, F-75248 Paris, France
[2] INSERM, U900, F-75248 Paris, France
[3] Mines ParisTech, F-77300 Fontainebleau, France
[4] Ecole Normale Super, F-75231 Paris, France
关键词
Signaling network; High-throughput data; Cancer; Drug response; Synthetic lethality; Targeted treatment; SET ENRICHMENT ANALYSIS; PATHWAY ANALYSIS; DISCOVERY; DATABASE; COMBINATIONS; SENSITIVITY; INTEGRATION; INHIBITION; RESISTANCE; NAVICELL;
D O I
10.1016/j.bbrc.2015.06.094
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Signaling pathways implicated in cancer create a complex network with numerous regulatory loops and redundant pathways. This complexity explains frequent failure of one-drug-one-target paradigm of treatment, resulting in drug resistance in patients. To overcome the robustness of cell signaling network, cancer treatment should be extended to a combination therapy approach. Integrating and analyzing patient high-throughput data together with the information about biological signaling machinery may help deciphering molecular patterns specific to each patient and finding the best combinations of candidates for therapeutic targeting. We review state of the art in the field of targeted cancer medicine from the computational systems biology perspective. We summarize major signaling network resources and describe their characteristics with respect to applicability for drug response prediction and intervention targets suggestion. Thus discuss methods for prediction of drug sensitivity and intervention combinations using signaling networks together with high-throughput data. Gradual integration of these approaches into clinical routine will improve prediction of response to standard treatments and adjustment of intervention schemes. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:386 / 391
页数:6
相关论文
共 63 条
  • [1] Comparative study of gene set enrichment methods
    Abatangelo, Luca
    Maglietta, Rosalia
    Distaso, Angela
    D'Addabbo, Annarita
    Creanza, Teresa Maria
    Mukherjee, Sayan
    Ancona, Nicola
    [J]. BMC BIOINFORMATICS, 2009, 10 : 275
  • [2] Prediction of Oncogenic Interactions and Cancer-Related Signaling Networks Based on Network Topology
    Acencio, Marcio Luis
    Bovolenta, Luiz Augusto
    Camilo, Esther
    Lemke, Ney
    [J]. PLOS ONE, 2013, 8 (10):
  • [3] Prediction of individualized therapeutic vulnerabilities in cancer from genomic profiles
    Aksoy, Buelent Arman
    Demir, Emek
    Babur, Oezguen
    Wang, Weiqing
    Jing, Xiaohong
    Schultz, Nikolaus
    Sander, Chris
    [J]. BIOINFORMATICS, 2014, 30 (14) : 2051 - 2059
  • [4] Signatures of mutational processes in human cancer
    Alexandrov, Ludmil B.
    Nik-Zainal, Serena
    Wedge, David C.
    Aparicio, Samuel A. J. R.
    Behjati, Sam
    Biankin, Andrew V.
    Bignell, Graham R.
    Bolli, Niccolo
    Borg, Ake
    Borresen-Dale, Anne-Lise
    Boyault, Sandrine
    Burkhardt, Birgit
    Butler, Adam P.
    Caldas, Carlos
    Davies, Helen R.
    Desmedt, Christine
    Eils, Roland
    Eyfjord, Jorunn Erla
    Foekens, John A.
    Greaves, Mel
    Hosoda, Fumie
    Hutter, Barbara
    Ilicic, Tomislav
    Imbeaud, Sandrine
    Imielinsk, Marcin
    Jaeger, Natalie
    Jones, David T. W.
    Jones, David
    Knappskog, Stian
    Kool, Marcel
    Lakhani, Sunil R.
    Lopez-Otin, Carlos
    Martin, Sancha
    Munshi, Nikhil C.
    Nakamura, Hiromi
    Northcott, Paul A.
    Pajic, Marina
    Papaemmanuil, Elli
    Paradiso, Angelo
    Pearson, John V.
    Puente, Xose S.
    Raine, Keiran
    Ramakrishna, Manasa
    Richardson, Andrea L.
    Richter, Julia
    Rosenstiel, Philip
    Schlesner, Matthias
    Schumacher, Ton N.
    Span, Paul N.
    Teague, Jon W.
    [J]. NATURE, 2013, 500 (7463) : 415 - +
  • [5] Allison KH, 2014, ONCOLOGY-NY, V28, P772
  • [6] An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules
    Basu, Amrita
    Bodycombe, Nicole E.
    Cheah, Jaime H.
    Price, Edmund V.
    Liu, Ke
    Schaefer, Giannina I.
    Ebright, Richard Y.
    Stewart, Michelle L.
    Ito, Daisuke
    Wang, Stephanie
    Bracha, Abigail L.
    Liefeld, Ted
    Wawer, Mathias
    Gilbert, Joshua C.
    Wilson, Andrew J.
    Stransky, Nicolas
    Kryukov, Gregory V.
    Dancik, Vlado
    Barretina, Jordi
    Garraway, Levi A.
    Hon, C. Suk-Yee
    Munoz, Benito
    Bittker, Joshua A.
    Stockwell, Brent R.
    Khabele, Dineo
    Stern, Andrew M.
    Clemons, Paul A.
    Shamji, Alykhan F.
    Schreiber, Stuart L.
    [J]. CELL, 2013, 154 (05) : 1151 - 1161
  • [7] Belinky F, 2015, DATABASE OXFORD, V2015
  • [8] Data-Derived Modeling Characterizes Plasticity of MAPK Signaling in Melanoma
    Bernardo-Faura, Marti
    Massen, Stefan
    Falk, Christine S.
    Brady, Nathan R.
    Eils, Roland
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (09)
  • [9] NaviCell Web Service for network-based data visualization
    Bonnet, Eric
    Viara, Eric
    Kuperstein, Inna
    Calzone, Laurence
    Cohen, David P. A.
    Barillot, Emmanuel
    Zinovyev, Andrei
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) : W560 - W565
  • [10] Pathway Commons, a web resource for biological pathway data
    Cerami, Ethan G.
    Gross, Benjamin E.
    Demir, Emek
    Rodchenkov, Igor
    Babur, Oezguen
    Anwar, Nadia
    Schultz, Nikolaus
    Bader, Gary D.
    Sander, Chris
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : D685 - D690