A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

被引:87
作者
Abdikamalov, Ernazar [1 ]
Burrows, Adam [2 ]
Ott, Christian D. [1 ,3 ,4 ]
Loeffler, Frank [4 ]
O'Connor, Evan [1 ]
Dolence, Joshua C. [2 ]
Schnetter, Erik [4 ,5 ,6 ,7 ]
机构
[1] CALTECH, TAPIR, Pasadena, CA 91125 USA
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[3] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe, WPI,Kavli IPMU, Kashiwa, Chiba 2778583, Japan
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[5] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[6] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada
[7] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
hydrodynamics; neutrinos; radiative transfer; stars: evolution; stars: neutron; supernovae: general; COLLAPSE SUPERNOVA SIMULATIONS; STELLAR CORE COLLAPSE; CIRCLE-DOT STAR; POSTBOUNCE EVOLUTION; DIMENSIONS; DIFFUSION; MECHANISM; HYDRODYNAMICS; ALGORITHM; EQUATION;
D O I
10.1088/0004-637X/755/2/111
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck & Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Coupling Implicit Monte Carlo Thermal Radiation Transport to Lagrange and ALE Hydrodynamics in the Lab and Fluid Frames
    Gentile, N. A.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2016, 45 (03) : 202 - 211
  • [42] Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations
    Foucart, Francois
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (03) : 4186 - 4207
  • [43] Time-dependent 2-stream particle transport
    Corngold, Noel
    ANNALS OF NUCLEAR ENERGY, 2015, 86 : 35 - 44
  • [44] Similarity solutions for radiation in time-dependent relativistic flows
    Lucy, LB
    ASTRONOMY & ASTROPHYSICS, 2005, 429 (01) : 31 - 37
  • [45] Transport with time-dependent boundary conditions in a ν-dimensional membrane
    Ash, R
    JOURNAL OF MEMBRANE SCIENCE, 2004, 232 (1-2) : 9 - 18
  • [46] Two universality classes of the Ziff-Gulari-Barshad model with CO desorption via time-dependent Monte Carlo simulations
    Fernandes, Henrique A.
    da Silva, Roberto
    Bernardi, Alinne B.
    PHYSICAL REVIEW E, 2018, 98 (03):
  • [47] The Random Feature Method for Time-Dependent Problems
    Chen, Jing-Run
    Weinan, E.
    Luo, Yi-Xin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (03) : 435 - 463
  • [48] SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012
    Aartsen, M. G.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, M.
    Altmann, D.
    Anderson, T.
    Archinger, M.
    Arguelles, C.
    Arlen, T. C.
    Auffenberg, J.
    Bai, X.
    Barwick, S. W.
    Baum, V.
    Bay, R.
    Baker, M.
    Beatty, J. J.
    Tjus, J. Becker
    Becker, K. -H.
    BenZvi, S.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bernhard, A.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, D. J.
    Bohm, C.
    Bos, F.
    Bose, D.
    Boeser, S.
    Botner, O.
    Brayeur, L.
    Bretz, H. -P.
    Brown, A. M.
    Buzinsky, N.
    Casey, J.
    Casier, M.
    Cheung, E.
    Chirkin, D.
    Christov, A.
    Christy, B.
    Clark, K.
    Classen, L.
    Clevermann, F.
    ASTROPHYSICAL JOURNAL, 2015, 807 (01)
  • [49] Identification of a Time-Dependent Coefficient in Heat Conduction Problem by New Iteration Method
    Huang, Dejian
    Li, Yanqing
    Pei, Donghe
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [50] New solutions for solute transport in a finite column with distance-dependent dispersivities and time-dependent solute sources
    You, Kehua
    Zhan, Hongbin
    JOURNAL OF HYDROLOGY, 2013, 487 : 87 - 97