A Comparison of MCC and CEN Error Measures in Multi-Class Prediction

被引:227
作者
Jurman, Giuseppe [1 ]
Riccadonna, Samantha [1 ]
Furlanello, Cesare [1 ]
机构
[1] Fdn Bruno Kessler, Trento, Italy
关键词
ROC CURVE; STATISTICAL COMPARISONS; AREA; PERFORMANCE; CLASSIFIERS; CLASSIFICATION; ACCURACY; AUC;
D O I
10.1371/journal.pone.0041882
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We show that the Confusion Entropy, a measure of performance in multiclass problems has a strong (monotone) relation with the multiclass generalization of a classical metric, the Matthews Correlation Coefficient. Analytical results are provided for the limit cases of general no-information (n-face dice rolling) of the binary classification. Computational evidence supports the claim in the general case.
引用
收藏
页数:8
相关论文
共 35 条
[1]  
[Anonymous], P INT JOINT C NEUR N
[2]  
[Anonymous], INFORM PROCESS UNPUB
[3]  
[Anonymous], STUDIES COMPUTATIONA
[4]  
[Anonymous], IFA P
[5]  
[Anonymous], P 17 ANN S PATT REC
[6]  
[Anonymous], THESIS GEORGIA STATE
[7]  
[Anonymous], 1963, Information Theory and Coding
[8]   Assessing the accuracy of prediction algorithms for classification: an overview [J].
Baldi, P ;
Brunak, S ;
Chauvin, Y ;
Andersen, CAF ;
Nielsen, H .
BIOINFORMATICS, 2000, 16 (05) :412-424
[9]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[10]  
Demsar J, 2006, J MACH LEARN RES, V7, P1