Gaussian moments for noisy independent component analysis

被引:150
作者
Hyvärinen, A [1 ]
机构
[1] Helsinki Univ Technol, Lab Comp & Informat Sci, FIN-02015 Espoo, Finland
关键词
multidimensional signal processing; nonlinear estimation; robustness; signal representations;
D O I
10.1109/97.763148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel approach for the problem of estimating the data model of independent component analysis (or blind source separation) in the presence of Gaussian noise is introduced. We define the Gaussian moments of a random variable as the expectations of the Gaussian function (and some related functions) with different scale parameters, and show how the Gaussian moments of a random variable can be estimated from noisy observations. This enables us to use Gaussian moments as one-unit contrast functions that have no asymptotic bias even in the presence of noise, and that are robust against outliers, To implement the maximization of the contrast functions based on Gaussian moments, a modification of the fixed-point (FastICA) algorithm is introduced.
引用
收藏
页码:145 / 147
页数:3
相关论文
共 50 条
  • [41] Cosine Multilinear Principal Component Analysis for Recognition
    Han, Feng
    Leng, Chengcai
    Li, Bing
    Basu, Anup
    Jiao, Licheng
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (06) : 1620 - 1630
  • [42] Double-Attentive Principle Component Analysis
    Wu, Danyang
    Zhang, Han
    Nie, Feiping
    Wang, Rong
    Yang, Chao
    Jia, Xiaoxue
    Li, Xuelong
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1814 - 1818
  • [43] Robust Principal Component Analysis Based on Discriminant Information
    Gao, Yunlong
    Lin, Tingting
    Zhang, Yisong
    Luo, Sizhe
    Nie, Feiping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1991 - 2003
  • [44] FAULT DETECTION AND ISOLATION WITH ROBUST PRINCIPAL COMPONENT ANALYSIS
    Tharrault, Yvon
    Mourot, Gilles
    Ragot, Jose
    Maquin, Didier
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (04) : 429 - 442
  • [45] Robustifying principal component analysis with spatial sign vectors
    Taskinen, Sara
    Koch, Inge
    Oja, Hannu
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (04) : 765 - 774
  • [46] Algorithms for Projection - Pursuit robust principal component analysis
    Croux, C.
    Filzmoser, P.
    Oliveira, M. R.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 87 (02) : 218 - 225
  • [47] Principal Component Analysis based on Nuclear norm Minimization
    Mi, Jian-Xun
    Zhang, Ya-Nan
    Lai, Zhihui
    Li, Weisheng
    Zhou, Lifang
    Zhong, Fujin
    NEURAL NETWORKS, 2019, 118 : 1 - 16
  • [48] Observer analysis and synthesis for perturbed Lipschitz systems under noisy time-varying measurements
    Etienne, Lucien
    Hetel, Laurentiu
    Efimov, Denis
    AUTOMATICA, 2019, 106 : 406 - 410
  • [49] Robust principal component analysis via ES-algorithm
    Lim, Yaeji
    Park, Yeonjoo
    Oh, Hee-Seok
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (01) : 149 - 159
  • [50] Robust sparse principal component analysis by DC programming algorithm
    Li, Jieya
    Yang, Liming
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 3183 - 3193