Gaussian moments for noisy independent component analysis

被引:150
作者
Hyvärinen, A [1 ]
机构
[1] Helsinki Univ Technol, Lab Comp & Informat Sci, FIN-02015 Espoo, Finland
关键词
multidimensional signal processing; nonlinear estimation; robustness; signal representations;
D O I
10.1109/97.763148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel approach for the problem of estimating the data model of independent component analysis (or blind source separation) in the presence of Gaussian noise is introduced. We define the Gaussian moments of a random variable as the expectations of the Gaussian function (and some related functions) with different scale parameters, and show how the Gaussian moments of a random variable can be estimated from noisy observations. This enables us to use Gaussian moments as one-unit contrast functions that have no asymptotic bias even in the presence of noise, and that are robust against outliers, To implement the maximization of the contrast functions based on Gaussian moments, a modification of the fixed-point (FastICA) algorithm is introduced.
引用
收藏
页码:145 / 147
页数:3
相关论文
共 50 条
  • [31] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [32] Principle component analysis: Robust versions
    Polyak, B. T.
    Khlebnikov, M. V.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (03) : 490 - 506
  • [33] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238
  • [34] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [35] Robust kernel principal component analysis and classification
    Debruyne, Michiel
    Verdonck, Tim
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 151 - 167
  • [36] Pivotal-Aware Principal Component Analysis
    Li, Xuelong
    Li, Pei
    Zhang, Hongyuan
    Zhu, Kangjia
    Zhang, Rui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12201 - 12210
  • [37] Robust Principal Component Analysis: An IRLS Approach
    Polyak, Boris T.
    Khlebnikov, Mikhail V.
    IFAC PAPERSONLINE, 2017, 50 (01): : 2762 - 2767
  • [38] Robust kernel principal component analysis and classification
    Michiel Debruyne
    Tim Verdonck
    Advances in Data Analysis and Classification, 2010, 4 : 151 - 167
  • [39] Principal component analysis: A generalized Gini approach
    Charpentier, Arthur
    Mussard, Stephane
    Ouraga, Tea
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 294 (01) : 236 - 249
  • [40] Robust Principal Component Analysis based on Purity
    Pan, Jinyan
    Cai, Yingqi
    Xie, Youwei
    Lin, Tingting
    Gao, Yunlong
    Cao, Chao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2017 - 2023