Gaussian moments for noisy independent component analysis

被引:150
|
作者
Hyvärinen, A [1 ]
机构
[1] Helsinki Univ Technol, Lab Comp & Informat Sci, FIN-02015 Espoo, Finland
关键词
multidimensional signal processing; nonlinear estimation; robustness; signal representations;
D O I
10.1109/97.763148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel approach for the problem of estimating the data model of independent component analysis (or blind source separation) in the presence of Gaussian noise is introduced. We define the Gaussian moments of a random variable as the expectations of the Gaussian function (and some related functions) with different scale parameters, and show how the Gaussian moments of a random variable can be estimated from noisy observations. This enables us to use Gaussian moments as one-unit contrast functions that have no asymptotic bias even in the presence of noise, and that are robust against outliers, To implement the maximization of the contrast functions based on Gaussian moments, a modification of the fixed-point (FastICA) algorithm is introduced.
引用
收藏
页码:145 / 147
页数:3
相关论文
共 50 条
  • [21] Performance Improvement of Text-Independent Speaker Verification Systems Based on Histogram Enhancement in Noisy Environments
    Kwon, C. H.
    Choi, J. K.
    Ambikairajah, E.
    INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 1901 - +
  • [22] Robust probabilistic principal component regression with switching mixture Gaussian noise for soft sensing
    Sadeghian, Anahita
    Jan, Nabil Magbool
    Wu, Ouyang
    Huang, Biao
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 222
  • [23] Data-Driven Reachability Analysis From Noisy Data
    Alanwar, Amr
    Koch, Anne
    Allgoewer, Frank
    Johansson, Karl Henrik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 3054 - 3069
  • [24] Adaptive Principal Component Analysis
    Li, Xiangyu
    Wang, Hua
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 486 - 494
  • [25] A robust principal component analysis
    Ibazizen, M
    Dauxois, J
    STATISTICS, 2003, 37 (01) : 73 - 83
  • [26] Asymptotically minimax bias estimation of the correlation coefficient for bivariate independent component distributions
    Shevlyakov, G. L.
    Smirnov, P. O.
    Shin, V. I.
    Kim, K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 111 : 59 - 65
  • [27] Robust spinal cord resting-state fMRI using independent component analysis-based nuisance regression noise reduction
    Hu, Yong
    Jin, Richu
    Li, Guangsheng
    Luk, Keith D. K.
    Wu, Ed. X.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (05) : 1421 - 1431
  • [28] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [29] Generalized spherical principal component analysis
    Leyder, Sarah
    Raymaekers, Jakob
    Verdonck, Tim
    STATISTICS AND COMPUTING, 2024, 34 (03)
  • [30] Principle component analysis: Robust versions
    B. T. Polyak
    M. V. Khlebnikov
    Automation and Remote Control, 2017, 78 : 490 - 506