A STATE SPACE ERROR ESTIMATE FOR POD-DEIM NONLINEAR MODEL REDUCTION

被引:132
作者
Chaturantabut, Saifon [1 ]
Sorensen, Danny C. [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
nonlinear model reduction; proper orthogonal decomposition; empirical interpolation methods; nonlinear partial differential equations; PROPER ORTHOGONAL DECOMPOSITION; PARTIAL-DIFFERENTIAL-EQUATIONS; EMPIRICAL INTERPOLATION METHOD; REDUCED-ORDER MODELS; DYNAMICAL-SYSTEMS; BOUNDS; ADAPTIVITY; OPERATORS;
D O I
10.1137/110822724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper derives state space error bounds for the solutions of reduced systems constructed using proper orthogonal decomposition (POD) together with the discrete empirical interpolation method (DEIM) recently developed for nonlinear dynamical systems [SIAM J. Sci. Comput., 32 (2010), pp. 2737-2764]. The resulting error estimates are shown to be proportional to the sums of the singular values corresponding to neglected POD basis vectors both in Galerkin projection of the reduced system and in the DEIM approximation of the nonlinear term. The analysis is particularly relevant to ODE systems arising from spatial discretizations of parabolic PDEs. The derivation clearly identifies where the parabolicity is crucial. It also explains how the DEIM approximation error involving the nonlinear term comes into play.
引用
收藏
页码:46 / 63
页数:18
相关论文
共 31 条
[1]  
[Anonymous], THESIS NATL U SINGAP
[2]  
[Anonymous], 1919, ANN MATH
[3]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[4]  
Chaturantabut S., 2009, TR0925 CAAM RIC U
[5]   NONLINEAR MODEL REDUCTION VIA DISCRETE EMPIRICAL INTERPOLATION [J].
Chaturantabut, Saifon ;
Sorensen, Danny C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2737-2764
[6]   33 YEARS OF NUMERICAL INSTABILITY .1. [J].
DAHLQUIST, G .
BIT, 1985, 25 (01) :188-204
[7]  
Dahlquist G., 1959, T ROYAL I TECHNOLOGY, V130
[8]  
Ebert F., 2006, 06364 TU BERL I MATH
[9]   A posteriori error bounds for the empirical interpolation method [J].
Eftang, Jens L. ;
Grepl, Martin A. ;
Patera, Anthony T. .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) :575-579
[10]   Non-linear model reduction for uncertainty quantification in large-scale inverse problems [J].
Galbally, D. ;
Fidkowski, K. ;
Willcox, K. ;
Ghattas, O. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (12) :1581-1608