Modeling gas solubility in ionic liquids with the SAFT-γ group contribution method

被引:40
作者
Ashrafmansouri, Seyedeh-Soghra [1 ]
Raeissi, Sona [1 ]
机构
[1] Shiraz Univ, Sch Chem & Petr Engn, Shiraz, Iran
关键词
CO2; Equation of state (EoS); Statistical associating fluid theory (SAFT); 1-Alkyl-3-methylimidazolium hexafluorophosphate ([C(n)mim][PF6]); 1-Alkyl-3-methylimidazolium tetrafluoroborate ([C(n)mim][BF4]); 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([C(n)mim][Tf2N]); DIRECTIONAL ATTRACTIVE FORCES; PRESSURE PHASE-BEHAVIOR; EQUATION-OF-STATE; THERMODYNAMIC PERTURBATION-THEORY; MULTIPLE BONDING SITES; CARBON-DIOXIDE; ASSOCIATING FLUIDS; CHAIN MOLECULES; VARIABLE RANGE; CO2;
D O I
10.1016/j.supflu.2011.12.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate knowledge of gas solubility is necessary for the development of processes involving ionic liquids (ILs) and gases. In this work, a group contribution approach is used to predict the phase behavior of CO2 + IL systems based on the statistical associating fluid theory (SAFT-gamma) as proposed by Lymperiadis et al. The IL molecule is divided into groups of CH3, CH2, cation head, and the anion. The SAFT-gamma parameters of CO2 + imidazolium-based ionic liquids with either [PF6], [BF4] or [Tf2N] anions are optimized to experimental data. The ability of the model to describe the phase behavior of these systems is demonstrated within a temperature range of 313.15-353.15K and pressures up to 100 bars. Moreover, by using the optimized group parameters, the performance of the model is examined by predicting equilibrium data of some CO2 + IL systems not included in the optimization database. The results show good agreement with experimental data. (C) 2012 Published by Elsevier B.V.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 57 条
[1]   Irregular ionic lattice model for gas solubilities in ionic liquids [J].
Ally, MR ;
Braunstein, J ;
Baltus, RE ;
Dai, S ;
DePaoli, DW ;
Simonson, JM .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (05) :1296-1301
[2]   Capturing the solubility Behavior of CO2 in ionic liquids by a simple model [J].
Andreu, Jordi S. ;
Vega, Lourdes F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (43) :16028-16034
[3]   Modeling the Solubility Behavior of CO2, H2, and Xe in [Cn-mim][Tf2N] Ionic Liquids [J].
Andreu, Jordi S. ;
Vega, Lourdes F. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (48) :15398-15406
[4]   High-pressure phase behavior of ionic liquid/CO2 systems [J].
Blanchard, LA ;
Gu, ZY ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (12) :2437-2444
[5]   Green processing using ionic liquids and CO2 [J].
Blanchard, LA ;
Hancu, D ;
Beckman, EJ ;
Brennecke, JF .
NATURE, 1999, 399 (6731) :28-29
[6]  
Blas FJ, 1997, MOL PHYS, V92, P135, DOI 10.1080/00268979709482082
[7]   HARD-SPHERE EQUATION OF STATE [J].
BOUBLIK, T .
JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (01) :471-&
[8]   Thermodynamic modeling of the phase behavior of binary systems of ionic liquids and carbon dioxide with the group contribution equation of state [J].
Breure, Bianca ;
Bottini, Susana B. ;
Witkamp, Geert-Jan ;
Peters, Cor J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (51) :14265-14270
[9]   EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) :635-&
[10]   PHASE-EQUILIBRIA OF ASSOCIATING FLUIDS CHAIN MOLECULES WITH MULTIPLE BONDING SITES [J].
CHAPMAN, WG ;
JACKSON, G ;
GUBBINS, KE .
MOLECULAR PHYSICS, 1988, 65 (05) :1057-1079