The proneural wave in the Drosophila optic lobe is driven by an excitable reaction-diffusion mechanism

被引:12
作者
Jorg, David J. [1 ,2 ]
Caygill, Elizabeth E. [2 ,3 ]
Hakes, Anna E. [2 ,3 ]
Contreras, Esteban G. [2 ]
Brand, Andrea H. [2 ]
Simons, Benjamin D. [1 ,2 ,4 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge, England
[2] Univ Cambridge, Wellcome Trust, Canc Res UK Gurdon Inst, Cambridge, England
[3] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge, England
[4] Univ Cambridge, Wellcome Trust, MRC, Stem Cell Inst, Cambridge, England
基金
英国生物技术与生命科学研究理事会;
关键词
STEM-CELL DIVISION; PATTERN-FORMATION; GENE-EXPRESSION; LATERAL INHIBITION; NOTCH; DIFFERENTIATION; NEUROBLASTS; SYSTEM; EGFR; PROLIFERATION;
D O I
10.7554/eLife.40919
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In living organisms, self-organised waves of signalling activity propagate spatiotemporal information within tissues. During the development of the largest component of the visual processing centre of the Drosophila brain, a travelling wave of proneural gene expression initiates neurogenesis in the larval optic lobe primordium and drives the sequential transition of neuroepithelial cells into neuroblasts. Here, we propose that this 'proneural wave' is driven by an excitable reaction-diffusion system involving epidermal growth factor receptor (EGFR) signalling interacting with the proneural gene l'sc. Within this framework, a propagating transition zone emerges from molecular feedback and diffusion. Ectopic activation of EGFR signalling in clones within the neuroepithelium demonstrates that a transition wave can be excited anywhere in the tissue by inducing signalling activity, consistent with a key prediction of the model. Our model illuminates the physical and molecular underpinnings of proneural wave progression and suggests a generic mechanism for regulating the sequential differentiation of tissues.
引用
收藏
页数:34
相关论文
共 58 条
[1]   Regulation of post-embryonic neuroblasts by Drosophila Grainyhead [J].
Almeida, MS ;
Bray, SJ .
MECHANISMS OF DEVELOPMENT, 2005, 122 (12) :1282-1293
[2]  
Bertet C, 2017, DEV ORIGIN CELL TYPE
[3]   Notch signalling: a simple pathway becomes complex [J].
Bray, Sarah J. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (09) :678-689
[4]   An effective screening design for sensitivity analysis of large models [J].
Campolongo, Francesca ;
Cariboni, Jessica ;
Saltelli, Andrea .
ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (10) :1509-1518
[5]   miR-7 Buffers Differentiation in the Developing Drosophila Visual System [J].
Caygill, Elizabeth E. ;
Brand, Andrea H. .
CELL REPORTS, 2017, 20 (06) :1255-1261
[6]   Pattern formation by lateral inhibition with feedback: A mathematical model of Delta-Notch intercellular signalling [J].
Collier, JR ;
Monk, NAM ;
Maini, PK ;
Lewis, JH .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 183 (04) :429-446
[7]   Dynamic Notch signalling regulates neural stem cell state progression in the Drosophila optic lobe [J].
Contreras, Esteban G. ;
Egger, Boris ;
Gold, Katrina S. ;
Brand, Andrea H. .
NEURAL DEVELOPMENT, 2018, 13
[8]   Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila [J].
Corson, Francis ;
Couturier, Lydie ;
Rouault, Herve ;
Mazouni, Khalil ;
Schweisguth, Francois .
SCIENCE, 2017, 356 (6337)
[9]   Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe [J].
Egger, Boris ;
Boone, Jason Q. ;
Stevens, Naomi R. ;
Brand, Andrea H. ;
Doe, Chris Q. .
NEURAL DEVELOPMENT, 2007, 2 (1)
[10]   Regulating the balance between symmetric and asymmetric stem cell division in the developing brain [J].
Egger, Boris ;
Gold, Katrina S. ;
Brand, Andrea H. .
FLY, 2011, 5 (03) :237-241