Using Feature Entropy to Guide Filter Pruning for Efficient Convolutional Networks

被引:9
|
作者
Li, Yun [1 ]
Wang, Luyang [1 ]
Peng, Sifan [1 ]
Kumar, Aakash [1 ]
Yin, Baoqun [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: DEEP LEARNING, PT II | 2019年 / 11728卷
关键词
Convolutional neural networks; Filter pruning; Entropy; Features selection module;
D O I
10.1007/978-3-030-30484-3_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid development of convolutional neural networks (CNNs) is usually accompanied by an increase in model volume and computational cost. In this paper, we propose an entropy-based filter pruning (EFP) method to learn more efficient CNNs. Different from many existing filter pruning approaches, our proposed method prunes unimportant filters based on the amount of information carried by their corresponding feature maps. We employ entropy to measure the information contained in the feature maps and design features selection module to formulate pruning strategies. Pruning and fine-tuning are iterated several times, yielding thin and more compact models with comparable accuracy. We empirically demonstrate the effectiveness of our method with many advanced CNNs on several benchmark datasets. Notably, for VGG-16 on CIFAR-10, our EFP method prunes 92.9% parameters and reduces 76% float-point-operations (FLOPs) without accuracy loss, which has advanced the state-of-the-art.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 50 条
  • [41] Feature learning for steganalysis using convolutional neural networks
    Yinlong Qian
    Jing Dong
    Wei Wang
    Tieniu Tan
    Multimedia Tools and Applications, 2018, 77 : 19633 - 19657
  • [42] Blending Pruning Criteria for Convolutional Neural Networks
    He, Wei
    Huang, Zhongzhan
    Liang, Mingfu
    Liang, Senwei
    Yang, Haizhao
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 3 - 15
  • [43] Discriminative Layer Pruning for Convolutional Neural Networks
    Jordao, Artur
    Lie, Maiko
    Schwartz, William Robson
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (04) : 828 - 837
  • [44] Magnitude and Similarity Based Variable Rate Filter Pruning for Efficient Convolution Neural Networks
    Ghimire, Deepak
    Kim, Seong-Heum
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [45] Adding Before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention
    Tian, Guanzhong
    Sun, Yiran
    Liu, Yuang
    Zeng, Xianfang
    Wang, Mengmeng
    Liu, Yong
    Zhang, Jiangning
    Chen, Jun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021,
  • [46] A Novel Clustering-Based Filter Pruning Method for Efficient Deep Neural Networks
    Wei, Xiaohui
    Shen, Xiaoxian
    Zhou, Changbao
    Yue, Hengshan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT II, 2020, 12453 : 245 - 258
  • [47] Filter Pruning via Measuring Feature Map Information
    Shao, Linsong
    Zuo, Haorui
    Zhang, Jianlin
    Xu, Zhiyong
    Yao, Jinzhen
    Wang, Zhixing
    Li, Hong
    SENSORS, 2021, 21 (19)
  • [48] Feature independent Filter Pruning by Successive Layers analysis
    Mondal, Milton
    Das, Bishshoy
    Lall, Brejesh
    Singh, Pushpendra
    Roy, Sumantra Dutta
    Joshi, Shiv Dutt
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 236
  • [49] ONLINE FILTER CLUSTERING AND PRUNING FOR EFFICIENT CONVNETS
    Zhou, Zhengguang
    Zhou, Wengang
    Hong, Richang
    Li, Houqiang
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 11 - 15
  • [50] Towards efficient filter pruning via topology
    Xiaozhou Xu
    Jun Chen
    Hongye Su
    Lei Xie
    Journal of Real-Time Image Processing, 2022, 19 : 639 - 649