Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations

被引:72
作者
Sassaman, Ryan [2 ]
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Dept Appl Math & Theoret Phys, Ctr Res & Educ Opt Sci & Applicat, Dover, DE 19901 USA
[2] Delaware State Univ, Dept Math, Dover, DE 19901 USA
关键词
Soliton perturbation; Adiabaticity; Integrals of motion; PERIODIC-WAVE SOLUTIONS; DECOMPOSITION METHOD; VECTOR POTENTIALS; SCALAR;
D O I
10.1016/j.cnsns.2008.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper obtains the adiabatic variation of the soliton velocity, in presence of perturbation terms, of the phi-four model and the nonlinear Klein-Gordon equations. There are three types of models of the nonlinear Klein-Gordon equation, with power law nonlinearity, that are studied in this paper. The soliton perturbation theory is utilized to carry out this investigation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3239 / 3249
页数:11
相关论文
共 20 条
[1]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[2]  
BACKENSTOSS G, 1970, ANN REV NUCL SCI, V20, P467
[3]   Solution of non-linear Klein-Gordon equation with a quadratic non-linear term by Adomian decomposition method [J].
Basak, Kartik Chandra ;
Ray, Pratap Chandra ;
Bera, Rasajit Kumar .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) :718-723
[4]   PION FORM-FACTOR AND THE KLEIN-GORDON EQUATION [J].
BAWIN, M ;
JAMINON, M .
PHYSICAL REVIEW C, 1984, 30 (01) :331-334
[5]   Soliton perturbation theory for the quadratic nonlinear Klein-Gordon equation [J].
Biswas, Anjan ;
Zony, Chenwi ;
Zerrad, Essaid .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) :153-156
[6]   Superfluid current disruption in a chain of weakly coupled Bose-Einstein condensates [J].
Cataliotti, FS ;
Fallani, L ;
Ferlaino, F ;
Fort, C ;
Maddaloni, P ;
Inguscio, M .
NEW JOURNAL OF PHYSICS, 2003, 5 :71.1-71.7
[7]   Josephson junction arrays with Bose-Einstein condensates [J].
Cataliotti, FS ;
Burger, S ;
Fort, C ;
Maddaloni, P ;
Minardi, F ;
Trombettoni, A ;
Smerzi, A ;
Inguscio, M .
SCIENCE, 2001, 293 (5531) :843-846
[8]   Exactly solvable potentials of the Klein-Gordon equation with the supersymmetry method [J].
Chen, G ;
Chen, ZD ;
Xuan, PC .
PHYSICS LETTERS A, 2006, 352 (4-5) :317-320
[9]   Solution of the Klein-Gordon for exponential scalar and vector potentials [J].
Chen, G .
PHYSICS LETTERS A, 2005, 339 (3-5) :300-303
[10]   Exact solutions for the generalized Klein-Gordon equation via a transformation and Exp-function method and comparison with Adomian's method [J].
Ebaid, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) :278-290