Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models

被引:12
作者
Ferrante, Matteo [1 ]
Rinaldi, Lisa [2 ]
Botta, Francesca [1 ]
Hu, Xiaobin [3 ]
Dolp, Andreas [3 ]
Minotti, Marta [4 ]
De Piano, Francesca [4 ]
Funicelli, Gianluigi [4 ]
Volpe, Stefania [5 ,6 ]
Bellerba, Federica [7 ]
De Marco, Paolo [1 ]
Raimondi, Sara [7 ]
Rizzo, Stefania [8 ,9 ]
Shi, Kuangyu [10 ,11 ]
Cremonesi, Marta [2 ]
Jereczek-Fossa, Barbara A. [5 ,6 ]
Spaggiari, Lorenzo [6 ,12 ]
De Marinis, Filippo [13 ]
Orecchia, Roberto [4 ,14 ]
Origgi, Daniela [1 ]
机构
[1] IEO European Inst Oncol IRCCS, Med Phys Unit, Via Ripamonti 435, I-20141 Milan, Italy
[2] IEO European Inst Oncol IRCCS, Radiat Res Unit, Via Ripamonti 435, I-20141 Milan, Italy
[3] Tech Univ Munich, Dept Informat, Arcisstr 21, D-80333 Munich, Germany
[4] European Inst Oncol IRCCS, IEO, Div Radiol, Via Ripamonti 435, I-20141 Milan, Italy
[5] IEO European Inst Oncol IRCCS, Div Radiat Oncol, Via Ripamonti 435, I-20141 Milan, Italy
[6] Univ Milan, Dept Oncol & Hematooncol, Via Festa Perdono 7, I-20122 Milan, Italy
[7] IEO European Inst Oncol IRCCS, Dept Expt Oncol, Via Ripamonti 435, I-20141 Milan, Italy
[8] Ist Imaging Svizzera Italiana IIMSI, Clin Radiol EOC, Via Tesserete 46, CH-6900 Lugano, Switzerland
[9] Univ Svizzera Italiana USI, Fac Biomed Sci, Via G Buffi 13, CH-6900 Lugano, Switzerland
[10] Tech Univ Munich, Chair Comp Aided Med Procedures, Dept Informat, Arcisstr 21, D-80333 Munich, Germany
[11] Bern Univ Hosp, Univ Bern, Dept Nucl Med, Freiburgstr 18, CH-3010 Bern, Switzerland
[12] IEO, European Inst Oncol IRCCS, Div Thorac Surg, Via Ripamonti 435, I-20141 Milan, Italy
[13] IEO, European Inst Oncol IRCCS, Div Thorac Oncol, Via Ripamonti 435, I-20141 Milan, Italy
[14] IEO, European Inst Oncol IRCCS, Sci Direct, Via Ripamonti 435, I-20141 Milan, Italy
关键词
nnU-Net; NSCLC; automatic segmentation; radiomics; hand-crafted; deep features; predictive model; ARTIFICIAL-INTELLIGENCE; PULMONARY NODULES; STAGE I; CANCER; CHALLENGES; PREDICTION; CLASSIFICATION; SIGNATURE; BIOMARKER;
D O I
10.3390/jcm11247334
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Radiomics investigates the predictive role of quantitative parameters calculated from radiological images. In oncology, tumour segmentation constitutes a crucial step of the radiomic workflow. Manual segmentation is time-consuming and prone to inter-observer variability. In this study, a state-of-the-art deep-learning network for automatic segmentation (nnU-Net) was applied to computed tomography images of lung tumour patients, and its impact on the performance of survival radiomic models was assessed. In total, 899 patients were included, from two proprietary and one public datasets. Different network architectures (2D, 3D) were trained and tested on different combinations of the datasets. Automatic segmentations were compared to reference manual segmentations performed by physicians using the DICE similarity coefficient. Subsequently, the accuracy of radiomic models for survival classification based on either manual or automatic segmentations were compared, considering both hand-crafted and deep-learning features. The best agreement between automatic and manual contours (DICE = 0.78 +/- 0.12) was achieved averaging 2D and 3D predictions and applying customised post-processing. The accuracy of the survival classifier (ranging between 0.65 and 0.78) was not statistically different when using manual versus automatic contours, both with hand-crafted and deep features. These results support the promising role nnU-Net can play in automatic segmentation, accelerating the radiomic workflow without impairing the models' accuracy. Further investigations on different clinical endpoints and populations are encouraged to confirm and generalise these findings.
引用
收藏
页数:17
相关论文
共 61 条
[1]  
Aerts Hugo J W L, 2019, TCIA
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   From Handcrafted to Deep-Learning-Based Cancer Radiomics Challenges and opportunities [J].
Afshar, Parnian ;
Mohammadi, Arash ;
Plataniotis, Konstantinos N. ;
Oikonomou, Anastasia ;
Benali, Habib .
IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (04) :132-160
[4]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[5]   Radiomics and deep learning in lung cancer [J].
Avanzo, Michele ;
Stancanello, Joseph ;
Pirrone, Giovanni ;
Sartor, Giovanna .
STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (10) :879-887
[6]   PHiSeg: Capturing Uncertainty in Medical Image Segmentation [J].
Baumgartner, Christian F. ;
Tezcan, Kerem C. ;
Chaitanya, Krishna ;
Hotker, Andreas M. ;
Muehlematter, Urs J. ;
Schawkat, Khoschy ;
Becker, Anton S. ;
Donati, Olivio ;
Konukoglu, Ender .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :119-127
[7]   Impact of Lesion Delineation and Intensity Quantisation on the Stability of Texture Features from Lung Nodules on CT: A Reproducible Study [J].
Bianconi, Francesco ;
Fravolini, Mario Luca ;
Palumbo, Isabella ;
Pascoletti, Giulia ;
Nuvoli, Susanna ;
Rondini, Maria ;
Spanu, Angela ;
Palumbo, Barbara .
DIAGNOSTICS, 2021, 11 (07)
[8]   Comparative evaluation of conventional and deep learning methods for semi-automated segmentation of pulmonary nodules on CT [J].
Bianconi, Francesco ;
Fravolini, Mario Luca ;
Pizzoli, Sofia ;
Palumbo, Isabella ;
Minestrini, Matteo ;
Rondini, Maria ;
Nuvoli, Susanna ;
Spanu, Angela ;
Palumbo, Barbara .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (07) :3286-3305
[9]  
Biewald L., Experiment Tracking with Weights and Biases
[10]   Radiomics and artificial intelligence in lung cancer screening [J].
Binczyk, Franciszek ;
Prazuch, Wojciech ;
Bozek, Pawel ;
Polanska, Joanna .
TRANSLATIONAL LUNG CANCER RESEARCH, 2021, 10 (02) :1186-1199