Reducing disorder in graphene nanoribbons by chemical edge modification

被引:16
|
作者
Dauber, J. [1 ,2 ,3 ]
Terres, B. [1 ,2 ,3 ]
Volk, C. [1 ,2 ,3 ]
Trellenkamp, S. [3 ]
Stampfer, C. [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, JARA FIT, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[3] Forschungszentrum Julich, PGI 8 9, D-52425 Julich, Germany
关键词
SUSPENDED GRAPHENE; BORON-NITRIDE; SPECTROSCOPY; ELECTRONICS;
D O I
10.1063/1.4866289
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present electronic transport measurements on etched graphene nanoribbons on silicon dioxide before and after a short hydrofluoric acid (HF) treatment. We report on changes in the transport properties, in particular, in terms of a decreasing transport gap and a reduced doping level after HF dipping. Interestingly, the effective energy gap is nearly unaffected by the HF treatment. Additional measurements on a graphene nanoribbon with lateral graphene gates support strong indications that the HF significantly modifies the edges of the investigated nanoribbons leading to a significantly reduced disorder potential in these graphene nanostructures. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Polyacrylonitrile Fibers Containing Graphene Oxide Nanoribbons
    Chien, An-Ting
    Liu, H. Clive
    Newcomb, Bradley A.
    Xiang, Changsheng
    Tour, James M.
    Kumar, Satish
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) : 5281 - 5288
  • [42] Absorption spectra of asymmetric bilayer graphene nanoribbons
    Li, T. S.
    Lin, M. F.
    SYNTHETIC METALS, 2013, 179 : 86 - 93
  • [43] Polarized Vibrational Infrared Absorption of Graphene Nanoribbons
    Luo, Guangfu
    Li, Hong
    Wang, Lu
    Lai, Lin
    Zhou, Jing
    Qin, Rui
    Lu, Jing
    Mei, Wai-Ning
    Gao, Zhengxiang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (15) : 6959 - 6965
  • [44] Dynamic response of exchange bias in graphene nanoribbons
    Jammalamadaka, S. Narayana
    Rao, S. S.
    Vanacken, J.
    Moshchalkov, V. V.
    Lu, Wei
    Tour, J. M.
    APPLIED PHYSICS LETTERS, 2012, 101 (14)
  • [45] Designing coved graphene nanoribbons with charge carrier mobility approaching that of graphene
    Chen, Liping
    Wang, Linjun
    Beljonne, David
    CARBON, 2014, 77 : 868 - 879
  • [46] Topologically localized excitons in single graphene nanoribbons
    Jiang, Song
    Neuman, Tomas
    Boeglin, Alex
    Scheurer, Fabrice
    Schull, Guillaume
    SCIENCE, 2023, 379 (6636) : 1049 - 1053
  • [47] Raman Fingerprints of Atomically Precise Graphene Nanoribbons
    Verzhbitskiy, Ivan A.
    De Corato, Marzio
    Ruini, Alice
    Molinari, Elisa
    Narita, Akimitsu
    Hu, Yunbin
    Schwab, Matthias G.
    Bruna, Matteo
    Yoon, Duhee
    Milana, Silvia
    Feng, Xinliang
    Muellen, Klaus
    Ferrari, Andrea C.
    Casiraghi, Cinzia
    Prezzi, Deborah
    NANO LETTERS, 2016, 16 (06) : 3442 - 3447
  • [48] Soluble Graphene Nanoribbons from Planarization of Oligophenylenes
    Sen, Choong Ping
    Valiyaveettil, Suresh
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (07) : 1686 - 1693
  • [49] Polarized Nonresonant Raman Spectra of Graphene Nanoribbons
    Luo, Guangfu
    Wang, Lu
    Li, Hong
    Qin, Rui
    Zhou, Jing
    Li, Linze
    Gao, Zhengxiang
    Mei, Wai-Ning
    Lu, Jing
    Nagase, Shigeru
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (50) : 24463 - 24468
  • [50] Effect of grain boundary on the buckling of graphene nanoribbons
    Neek-Amal, M.
    Peeters, F. M.
    APPLIED PHYSICS LETTERS, 2012, 100 (10)