On the location of critical point for the Poisson equation in plane

被引:1
|
作者
Kim, Sun-Chul [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
关键词
critical point; location; vortex; level curve; stagnation point; UNIQUENESS; FLOWS;
D O I
10.1016/j.jmaa.2005.07.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The location of the unique critical point of Delta u = -1 is investigated by conformal mapping method in complex variables. It is found that if the domain is given by r = 1 + cp (0), the critical point coincides with the center of mass up to the order of E. However, the two do not exactly match in general as shown by simple examples. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 50 条
  • [21] Poisson source localization on the plane: change-point case
    Farinetto, C.
    Kutoyants, Yu A.
    Top, A.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (03) : 675 - 698
  • [22] Poisson source localization on the plane: change-point case
    C. Farinetto
    Yu. A. Kutoyants
    A. Top
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 675 - 698
  • [23] EQUATION OF STATE NEAR CRITICAL POINT
    JOSEPHSON, BD
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1969, 2 (07): : 1113 - +
  • [24] WEAKLY EINSTEIN CRITICAL POINT EQUATION
    Hwang, Seungsu
    Yun, Gabjin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) : 1087 - 1094
  • [25] EQUATION OF STATE IN NEIGHBORHOOD OF CRITICAL POINT
    WIDOM, B
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (11): : 3898 - &
  • [26] The critical point equation and contact geometry
    Ghosh A.
    Patra D.S.
    Journal of Geometry, 2017, 108 (1) : 185 - 194
  • [27] Localization of Point Sources for Poisson Equation using State Observers
    Majeed, M. U.
    Laleg-Kirati, T. M.
    IFAC PAPERSONLINE, 2016, 49 (08): : 25 - 30
  • [28] Effective critical point location:: application to thiophenes
    Perez-Pellitero, J.
    Ungerer, P.
    Mackie, A. D.
    MOLECULAR SIMULATION, 2007, 33 (9-10) : 777 - 785
  • [29] ADVANCED 9-POINT FORMULAS FOR THE DISCRETIZATION OF POISSON EQUATION
    KASPER, E
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1990, 298 (1-3): : 295 - 295
  • [30] POISSON EQUATION FOR QUEUES DRIVEN BY A MARKOVIAN MARKED POINT PROCESS
    ASMUSSEN, S
    BLADT, M
    QUEUEING SYSTEMS, 1994, 17 (1-2) : 235 - 274