Perylene diimide incorporated activated carbon as a composite electrode for asymmetric supercapacitor

被引:16
作者
Dubey, Prashant [1 ,2 ]
Bhardwaj, Komal [1 ,2 ]
Kumar, Rachana [1 ,2 ]
Sundriyal, Shashank [1 ]
Maheshwari, Priyanka H. [1 ,2 ]
机构
[1] Natl Phys Lab CSIR NPL, CSIR, Adv Carbon Prod & Metrol Dept, New Delhi 110012, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 211002, India
关键词
Asymmetric supercapacitor; Composites; Electrode; Energy density; Perylene diimide; ENERGY-STORAGE DEVICES; GRAPHENE NETWORKS; PERFORMANCE; TRANSITION; NANOSHEETS;
D O I
10.1016/j.est.2022.106058
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Organic molecules-based supercapacitors have piqued interest as an efficient energy storage component. In this study, an organic composite based asymmetric supercapacitor has been developed using optimized amount of perylene diimide (PDI) in combination with activated carbon. The composite sample with 1 wt% PDI showed remarkable electrochemical performance, with a specific capacitance/(specific capacity) of 617 F/g/(171.3 mAh/g) at 0.5 A/g, higher than that of the individual components. Further, the assembled asymmetric device PPAC/PDI-1//PPAC delivered a high energy density of 62.3 Wh/kg at a power density of 455 W/kg, while retaining 91.4 % of its initial specific capacitance after 10,000 charge-discharge cycles. This study provides an avenue for the utilization of organic molecules for super-capacitor application owing to its polarity and conju-gation with carbon.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors [J].
Abdah, Muhammad Amirul Aizat Mohd ;
Azman, Nur Hawa Nabilah ;
Kulandaivalu, Shalini ;
Sulaiman, Yusran .
MATERIALS & DESIGN, 2020, 186
[2]   An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes [J].
Algharaibeh, Zaher ;
Pickup, Peter G. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (02) :147-149
[3]   Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage [J].
An, Ning ;
Zhang, Fuhai ;
Hu, Zhongai ;
Li, Zhimin ;
Li, Li ;
Yang, Yuying ;
Guo, Bingshu ;
Lei, Ziqiang .
RSC ADVANCES, 2015, 5 (30) :23942-23951
[4]  
[Anonymous], 2013, Electrochemical supercapacitors: scientific fundamentals and technological applications
[5]  
Banerjee S., 2020, HDB NANOCOMPOSITE SU, P341
[6]   Comparative study of aliphatic vs. aromatic substituted perylenediimide as electron transport layer material [J].
Bhardwaj, Komal ;
Naqvi, Samya ;
Kumar, Rachana .
SOLAR ENERGY, 2021, 220 (220) :608-616
[7]   Perylenediimide/Graphite Foil-Based Electrode Materials with Outstanding Cycling Stability for Symmetric Supercapacitor Device Architectures [J].
Biradar, Madan R. ;
Kale, Amol M. ;
Kim, Byung Chul ;
Bhosale, Sidhanath, V ;
Bhosale, Sheshanath, V .
ENERGY TECHNOLOGY, 2022, 10 (06)
[8]   Electrochemical synthesis of polypyrrole/carbon nanotube nanoscale composites using well-aligned carbon nanotube arrays [J].
Chen, JH ;
Huang, ZP ;
Wang, DZ ;
Yang, SX ;
Wen, JG ;
Ren, ZF .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 73 (02) :129-131
[9]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[10]   2 D Materials for Electrochemical Energy Storage: Design, Preparation, and Application [J].
Cui, Huijuan ;
Guo, Yibo ;
Ma, Wei ;
Zhou, Zhen .
CHEMSUSCHEM, 2020, 13 (06) :1155-1171