On a classification of irreducible admissible modulo p representations of a p-adic split reductive group

被引:15
作者
Abe, Noriyuki [1 ]
机构
[1] Hokkaido Univ, Creat Res Inst CRIS, Kita Ku, Sapporo, Hokkaido 0010021, Japan
关键词
p-adic group; modulo p representation; classification; PRINCIPAL SERIES;
D O I
10.1112/S0010437X13007379
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a classification of irreducible admissible modulo p representations of a split p-adic reductive group in terms of supersingular representations. This is a generalization of a theorem of Herzig.
引用
收藏
页码:2139 / 2168
页数:30
相关论文
共 17 条
[1]   IRREDUCIBLE MODULAR-REPRESENTATIONS OF GL2 OF A LOCAL-FIELD [J].
BARTHEL, L ;
LIVNE, R .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :261-292
[2]   MODULAR-REPRESENTATIONS OF GL(2) OF A LOCAL-FIELD - THE ORDINARY, UNRAMIFIED CASE [J].
BARTHEL, L ;
LIVNE, R .
JOURNAL OF NUMBER THEORY, 1995, 55 (01) :1-27
[3]  
Bernstein J.N., 1976, Uspehi Mat. Nauk, V31, P5
[4]  
Bourbaki N., 1975, Lie Groups and Lie Algebras
[5]  
Breuil C., COMPOSITIO MATH, VI
[6]  
Breuil C, 2012, MEM AM MATH SOC, V216, P1
[7]  
Chriss N., 2010, Representation Theory and Complex Geometry. Modern Birkhauser Classics
[8]   SOME CHARACTERIZATIONS OF BRUHAT ORDERING ON A COXETER GROUP AND DETERMINATION OF RELATIVE MOBIUS FUNCTION [J].
DEODHAR, VV .
INVENTIONES MATHEMATICAE, 1977, 39 (02) :187-198
[9]  
Emerton M, 2010, ASTERISQUE, P355
[10]  
GROSSE-KLONNE E., PREPRINT