Aggregation-Induced Emission-Responsive Metal-Organic Frameworks

被引:79
|
作者
Dong, Jinqiao [1 ]
Shen, Pingchuan [3 ]
Ying, Shaoming [1 ]
Li, Zi-Jian [4 ]
Yuan, Yi Di [1 ]
Wang, Yuxiang [1 ]
Zheng, Xiaoyan [2 ,5 ]
Peh, Shing Bo [1 ]
Yuan, Hongye [1 ]
Liu, Guoliang [1 ]
Cheng, Youdong [1 ]
Pan, Yutong [1 ]
Shi, Leilei [1 ]
Zhang, Jian [1 ]
Yuan, Daqiang [6 ]
Liu, Bin [1 ]
Zhao, Zujin [3 ]
Tang, Ben Zhong [2 ]
Zhao, Dan [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[2] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
[3] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Luminescence Mol Aggregate, Guangzhou 510640, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Appl Phys, Key Lab Interfacial Phys & Technol, Shanghai 201800, Peoples R China
[5] Beijing Inst Technol, Beijing Key Lab Photoelect Electrophoton Convers, Sch Chem & Chem Engn, Key Lab Cluster Sci,Minist Educ, Beijing 100081, Peoples R China
[6] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
基金
新加坡国家研究基金会;
关键词
TURN-ON FLUORESCENCE; UP-CONVERSION; MOLECULAR ROTORS; LUMINESCENCE; SIZE; NANOSHEETS; VISCOSITY; ROTATION; WEIGHT; DESIGN;
D O I
10.1021/acs.chemmater.0c02277
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although many studies on luminescent metal-organic frameworks (MOFs) have been reported for chemical sensing applications, it has yet to be realized in MOFs the precise linearity control over photophysical characteristics and sensing sensitivity at the molecular level for a fundamental understanding of the structure-property relationships. Here we demonstrate the first example of aggregation-induced emission (AIE)-responsive MOFs with precise linearity control of photophysics and chemical sensing. We employ a multivariate strategy to tune the number of AIE molecular rotors (dynamic phenyl rings) in a MOF system by varying the ratio of tetraphenylethylene (TPE)-based organic linker, leading to highly tunable photophysical characteristics (e.g., maximum emission peak, quantum yield, and optical band gap) featuring linear correlations with linker content. Importantly, the sensing sensitivity of these dynamic MOFs can be enhanced by increasing the number of AIE molecular rotors with perfect linearity control, as systematically investigated by fluorescence responsive to temperature, viscosity, guest molecular size, as well as theoretical calculations. Our study shows that the sensing sensitivity of the AIE-responsive MOF in this study (termed as NUS-13-100%) is better than those of our previously reported materials. Significantly, the observed linear relationship between emission intensity and molecular weight of polystyrene as the analyte suggests that such AIE-responsive MOFs could be used as molecular sensors for fluorescence-based determination of polymer molecular weight. Eventually, the optical sensing device containing NUS-13-100% shows a perfect linearity response with high sensitivity for the detection of trace toxic benzene vapor. In short, our work paves the way toward porous MOFs containing ALE molecular rotors with a versatile responsive emission mechanism and suitable pore size/geometry for broad applications in chemical sensing and environmental monitoring.
引用
收藏
页码:6706 / 6720
页数:15
相关论文
共 50 条
  • [21] Guest-Responsive Metal-Organic Frameworks as Scaffolds for Separation and Sensing Applications
    Karmakar, Avishek
    Samanta, Partha
    Desai, Aamod V.
    Ghosh, Sujit K.
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (10) : 2457 - 2469
  • [22] Aggregation-induced emission polymer nanoparticles with pH-responsive fluorescence
    Zhao, Yuming
    Zhu, Wen
    Ren, Lixia
    Zhang, Ke
    POLYMER CHEMISTRY, 2016, 7 (34) : 5386 - 5395
  • [23] Theranostic applications of biomolecule-responsive aggregation-induced emission luminogens
    Liao, Yanan
    Peng, Zhen
    Liu, Xiaolin
    Hu, Yubing
    Zhang, Jing
    INTERDISCIPLINARY MEDICINE, 2023, 1 (04):
  • [24] Enhancing the Theranostic Performance of Organic Photosensitizers with Aggregation-Induced Emission
    Kenry
    Liu, Bin
    ACCOUNTS OF MATERIALS RESEARCH, 2022, : 721 - 734
  • [25] Self-Assembly of Metal Nanoclusters for Aggregation-Induced Emission
    Wang, Jianxing
    Lin, Xiangfang
    Shu, Tong
    Su, Lei
    Liang, Feng
    Zhang, Xueji
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (08)
  • [26] Metal-Covalent Organic Frameworks (MCOFs): A Bridge Between Metal-Organic Frameworks and Covalent Organic Frameworks
    Dong, Jinqiao
    Han, Xing
    Liu, Yan
    Li, Haiyang
    Cui, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) : 13722 - 13733
  • [27] Metal-Organic Frameworks and Metal-Organic Cages - A Perspective
    Pilgrim, Ben S.
    Champness, Neil R.
    CHEMPLUSCHEM, 2020, 85 (08): : 1842 - 1856
  • [28] Direct Observation of Aggregation-Induced Emission Mechanism
    Guan, Jianxin
    Wei, Rong
    Prlj, Antonio
    Peng, Jie
    Lin, Kun-Han
    Liu, Jitian
    Han, Han
    Corminboeuf, Clemence
    Zhao, Dahui
    Yu, Zhihao
    Zheng, Junrong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (35) : 14903 - 14909
  • [29] Immobilization of AIEgens into metal-organic frameworks: Ligand design, emission behavior, and applications
    Gui, Bo
    Yu, Na
    Meng, Yi
    Hu, Fang
    Wang, Cheng
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2017, 55 (11) : 1809 - 1817
  • [30] An Ising model for metal-organic frameworks
    Hoeft, Nicolas
    Horbach, Juergen
    Martin-Mayor, Victor
    Seoane, Beatriz
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (08)