Advances in Network Controllability

被引:111
作者
Xiang, Linying [1 ]
Chen, Fei [1 ,2 ]
Ren, Wei [3 ]
Chen, Guanrong [4 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Control Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Liaoning, Peoples R China
[3] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[4] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
MULTIAGENT SYSTEMS; COMPLEX NETWORKS; STRUCTURAL CONTROLLABILITY; EDGE DYNAMICS; CONSENSUS; ROBUSTNESS;
D O I
10.1109/MCAS.2019.2909446
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The last decade has seen an explosion of research in network controllability. The present article reviews some basic concepts, significant progress, important results and recent advances in the studies of the controllability of networked linear dynamical systems, regarding the relationship of the network topology, node-system dynamics, external control inputs and inner dynamical interactions with the controllability of such complex networked dynamical systems. Different approaches to analyzing the network controllability are evaluated. Some advanced topics on the selection of driver nodes, optimization of network controllability and control energy are discussed. Potential applications to real-world networked systems are also described. Finally, a near-future research outlook is highlighted.
引用
收藏
页码:8 / 32
页数:25
相关论文
共 99 条
[1]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[2]   Formation controllability of high-order linear time-invariant swarm systems [J].
Cai, N. ;
Zhong, Y-S. .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (04) :646-654
[3]  
Camlibel M. K., 2012, International Journal of Systems, Control and Communications, V4, P72, DOI 10.1504/IJSCC.2012.045932
[4]   A Class of Uncontrollable Diffusively Coupled Multiagent Systems with Multichain Topologies [J].
Cao, Ming ;
Zhang, Shuo ;
Camlibel, M. Kanat .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (02) :465-469
[5]  
Chen F., 2016, WILEY ENCY ELECT ELE, P1, DOI [10.1002/047134608X.W8314, DOI 10.1002/047134608X.W8314]
[6]  
Chen GR, 2017, INT J AUTOM COMPUT, V14, P1, DOI [10.1007/s11633-016-1052-9, 10.1080/15623599.2017.1354514]
[7]   Energy scaling and reduction in controlling complex networks [J].
Chen, Yu-Zhong ;
Wang, Le-Zhi ;
Wang, Wen-Xu ;
Lai, Ying-Cheng .
ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (04)
[8]  
Chui C. K., 1989, LINEAR SYSTEMS OPTIM
[9]   Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks [J].
Cowan, Noah J. ;
Chastain, Erick J. ;
Vilhena, Daril A. ;
Freudenberg, James S. ;
Bergstrom, Carl T. .
PLOS ONE, 2012, 7 (06)
[10]   Complex Networks: An Engineering View [J].
Cui, LiYing ;
Kumara, Soundar ;
Albert, Reka .
IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2010, 10 (03) :10-25