Deciphering Cancer Cell Behavior From Motility and Shape Features: Peer Prediction and Dynamic Selection to Support Cancer Diagnosis and Therapy

被引:19
作者
D'Orazio, Michele [1 ]
Corsi, Francesca [2 ,3 ]
Mencattini, Arianna [1 ]
Di Giuseppe, Davide [1 ]
Colomba Comes, Maria [1 ]
Casti, Paola [1 ]
Filippi, Joanna [1 ]
Di Natale, Corrado [1 ]
Ghibelli, Lina [3 ]
Martinelli, Eugenio [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Elect Engn, Rome, Italy
[2] Univ Roma Tor Vergata, Dept Chem Sci & Technol, Rome, Italy
[3] Univ Roma Tor Vergata, Dept Biol, Rome, Italy
关键词
machine learning; cell motility; peer prediction; dynamic feature selection; cancer heterogeneity; metastatic cancer cell detection; drug screening;
D O I
10.3389/fonc.2020.580698
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cell motility varies according to intrinsic features and microenvironmental stimuli, being a signature of underlying biological phenomena. The heterogeneity in cell response, due to multilevel cell diversity especially relevant in cancer, poses a challenge in identifying the biological scenario from cell trajectories. We propose here a novel peer prediction strategy among cell trajectories, deciphering cell state (tumor vs. nontumor), tumor stage, and response to the anticancer drug etoposide, based on morphology and motility features, solving the strong heterogeneity of individual cell properties. The proposed approach first barcodes cell trajectories, then automatically selects the good ones for optimal model construction (good teacher and test sample selection), and finally extracts a collective response from the heterogeneous populations via cooperative learning approaches, discriminating with high accuracy prostate noncancer vs. cancer cells of high vs. low malignancy. Comparison with standard classification methods validates our approach, which therefore represents a promising tool for addressing clinically relevant issues in cancer diagnosis and therapy, e.g., detection of potentially metastatic cells and anticancer drug screening.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Peer Prediction with Heterogeneous Users [J].
Agarwal, Arpit ;
Mandal, Debmalya ;
Parkes, David C. ;
Shah, Nisarg .
ACM TRANSACTIONS ON ECONOMICS AND COMPUTATION, 2020, 8 (01)
[2]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[3]  
Artymovich K, 2016, ASSAY ESS BIOSCI, P1
[4]   Size invariant circle detection [J].
Atherton, TJ ;
Kerbyson, DJ .
IMAGE AND VISION COMPUTING, 1999, 17 (11) :795-803
[5]  
Bevington P.R., 1993, COMPUT PHYS, V7, P415, DOI [DOI 10.1063/1.4823194, 10.1063/1.4823194]
[6]   Organs on chip approach: a tool to evaluate cancer -immune cells interactions [J].
Biselli, Elena ;
Agliari, Elena ;
Barra, Adriano ;
Bertani, Francesca Romana ;
Gerardino, Annamaria ;
De Ninno, Adele ;
Mencattini, Arianna ;
Di Giuseppe, Davide ;
Mattei, Fabrizio ;
Schiavoni, Giovanna ;
Lucarini, Valeria ;
Vacchelli, Erika ;
Kroemer, Guido ;
Di Natale, Corrado ;
Martinelli, Eugenio ;
Businaro, Luca .
SCIENTIFIC REPORTS, 2017, 7
[7]   Active contours without edges [J].
Chan, TF ;
Vese, LA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) :266-277
[8]   The influence of spatial and temporal resolutions on the analysis of cell-cell interaction: a systematic study for time-lapse microscopy applications [J].
Comes, M. C. ;
Casti, P. ;
Mencattini, A. ;
Di Giuseppe, D. ;
Mermet-Meillon, F. ;
De Ninno, A. ;
Parrini, M. C. ;
Businaro, L. ;
Di Natale, C. ;
Martinelli, E. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   A Camera Sensors-Based System to Study Drug Effects on In Vitro Motility: The Case of PC-3 Prostate Cancer Cells [J].
Comes, Maria Colomba ;
Mencattini, Arianna ;
Di Giuseppe, Davide ;
Filippi, Joanna ;
D'Orazio, Michele ;
Casti, Paola ;
Corsi, Francesca ;
Ghibelli, Lina ;
Di Natale, Corrado ;
Martinelli, Eugenio .
SENSORS, 2020, 20 (05)
[10]   Epithelial-to-mesenchymal plasticity harnesses endocytic circuitries [J].
Corallino, Salvatore ;
Malabarba, Maria Grazia ;
Zobel, Martina ;
Di Fiore, Pier Paolo ;
Scita, Giorgio .
FRONTIERS IN ONCOLOGY, 2015, 5