Reducing Spontaneous Emission in Circuit Quantum Electrodynamics by a Combined Readout/Filter Technique

被引:29
作者
Bronn, Nicholas T. [1 ]
Magesan, Easwar [1 ]
Masluk, Nicholas A. [1 ]
Chow, Jerry M. [1 ]
Gambetta, Jay M. [1 ]
Steffen, Matthias [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Circuit quantum electrodynamics; crostalk; linear discriminant analysis; microwave measurement; quantum computing; spontaneous emission; superconducting microwave devices; STATES; PHOTON; QUBITS;
D O I
10.1109/TASC.2015.2456109
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Physical implementations of qubits can be extremely sensitive to environmental coupling, which can result in decoherence. While efforts are made for protection, coupling to the environment is necessary to measure and manipulate the state of the qubit. As such, the goal of having long qubit energy relaxation times is in competition with that of achieving high-fidelity qubit control and measurement. Here, we propose a method that integrates filtering techniques for preserving superconducting qubit lifetimes together with the dispersive coupling of the qubit to a microwave resonator for control and measurement. The result is a compact circuit that protects qubits from spontaneous loss to the environment, while also retaining the ability to perform fast, high-fidelity readout. Importantly, we show the device operates in a regime that is attainable with current experimental parameters and provide a specific example for superconducting qubits in circuit quantum electrodynamics.
引用
收藏
页数:10
相关论文
共 32 条
[1]   rf-SQUID-Mediated Coherent Tunable Coupling between a Superconducting Phase Qubit and a Lumped-Element Resonator [J].
Allman, M. S. ;
Altomare, F. ;
Whittaker, J. D. ;
Cicak, K. ;
Li, D. ;
Sirois, A. ;
Strong, J. ;
Teufel, J. D. ;
Simmonds, R. W. .
PHYSICAL REVIEW LETTERS, 2010, 104 (17)
[2]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[3]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[4]   Nonlinear dispersive regime of cavity QED: The dressed dephasing model [J].
Boissonneault, Maxime ;
Gambetta, J. M. ;
Blais, Alexandre .
PHYSICAL REVIEW A, 2008, 77 (06)
[5]   Efficient algorithms for maximum likelihood decoding in the surface code [J].
Bravyi, Sergey ;
Suchara, Martin ;
Vargo, Alexander .
PHYSICAL REVIEW A, 2014, 90 (03)
[6]   Demonstration of a quantum error detection code using a square lattice of four superconducting qubits [J].
Corcoles, A. D. ;
Magesan, Easwar ;
Srinivasan, Srikanth J. ;
Cross, Andrew W. ;
Steffen, M. ;
Gambetta, Jay M. ;
Chow, Jerry M. .
NATURE COMMUNICATIONS, 2015, 6
[7]  
Devoret MH, 1997, LES HOUCH S, V63, P351
[8]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188
[9]   Superconducting Qubit with Purcell Protection and Tunable Coupling [J].
Gambetta, J. M. ;
Houck, A. A. ;
Blais, Alexandre .
PHYSICAL REVIEW LETTERS, 2011, 106 (03)
[10]   Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting [J].
Gambetta, Jay ;
Blais, Alexandre ;
Schuster, D. I. ;
Wallraff, A. ;
Frunzio, L. ;
Majer, J. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2006, 74 (04)