A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear

被引:25
作者
Zarandi, M. H. Fazel [1 ,2 ]
Khadangi, A. [1 ]
Karimi, F. [1 ]
Turksen, I. B. [2 ,3 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, Tehran, Iran
[2] Univ Toronto, Knowledge Intelligent Syst Lab, Toronto, ON, Canada
[3] TOBB Econ & Technol Univ, Ankara, Turkey
关键词
Expert system; Computer-aided diagnosis (CAD); Interval type-2 fuzzy set theory; Knee; Meniscus tear; Medical image processing; ARTICULAR-CARTILAGE; KNEE; SEGMENTATION; SETS;
D O I
10.1007/s10278-016-9884-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Meniscal tear is one of the prevalent knee disorders among young athletes and the aging population, and requires correct diagnosis and surgical intervention, if necessary. Not only the errors followed by human intervention but also the obstacles of manual meniscal tear detection highlight the need for automatic detection techniques. This paper presents a type-2 fuzzy expert system for meniscal tear diagnosis using PD magnetic resonance images (MRI). The scheme of the proposed type-2 fuzzy image processing model is composed of three distinct modules: Pre-processing, Segmentation, and Classification. lambda-nhancement algorithm is used to perform the pre-processing step. For the segmentation step, first, Interval Type-2 Fuzzy C-Means (IT2FCM) is applied to the images, outputs of which are then employed by Interval Type-2 Possibilistic C-Means (IT2PCM) to perform post-processes. Second stage concludes with re-estimation of "eta" value to enhance IT2PCM. Finally, a Perceptron neural network with two hidden layers is used for Classification stage. The results of the proposed type-2 expert system have been compared with a well-known segmentation algorithm, approving the superiority of the proposed system in meniscal tear recognition.
引用
收藏
页码:677 / 695
页数:19
相关论文
共 48 条
  • [1] Quantification of meniscal volume by segmentation of 3T magnetic resonance images
    Bowers, Megan E.
    Tung, Glenn A.
    Fleming, Braden C.
    Crisco, Joseph J.
    Rey, Jesus
    [J]. JOURNAL OF BIOMECHANICS, 2007, 40 (12) : 2811 - 2815
  • [2] Castillo O, 2008, STUD FUZZ SOFT COMP, V223, P1
  • [3] Choi YS, 1997, IEEE T IMAGE PROCESS, V6, P808, DOI 10.1109/83.585232
  • [4] MR DIAGNOSIS OF MENISCAL TEARS OF THE KNEE - IMPORTANCE OF HIGH SIGNAL IN THE MENISCUS THAT EXTENDS TO THE SURFACE
    DESMET, AA
    NORRIS, MA
    YANDOW, DR
    QUINTANA, FA
    GRAF, BK
    KEENE, JS
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 1993, 161 (01) : 101 - 107
  • [5] FazelZarandi M. H., TYPE 2 POSSIBILISTIC, P30
  • [6] FazelZarandi MH, 2009, APPL SOFT COMPUT, V11, P285
  • [7] Fox Michael G, 2007, Magn Reson Imaging Clin N Am, V15, P103, DOI 10.1016/j.mric.2007.02.004
  • [8] Segmentation of the bones in MRIs of the knee using phase, magnitude, and shape information
    Fripp, Jurgen
    Bourgeat, Pierrick
    Crozier, Stuart
    Ourselin, Sebastien
    [J]. ACADEMIC RADIOLOGY, 2007, 14 (10) : 1201 - 1208
  • [9] Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging
    Fu, Ja-Chih
    Lin, Chen-Chiang
    Wang, Chih-Nan
    Ou, Yang-Kun
    [J]. JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2013, 30 (02) : 67 - 77
  • [10] Hata Y, 2001, LECT NOTES COMPUT SC, V2206, P55