Performance measures for dynamic multi-objective optimisation algorithms

被引:81
|
作者
Helbig, Mande [1 ,2 ]
Engelbrecht, Andries P. [2 ]
机构
[1] CSIR, Meraka Inst, ZA-0184 Pretoria, South Africa
[2] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa
关键词
Dynamic multi-objective optimisation; Performance measure; FRONT GENETIC ALGORITHM; EVOLUTIONARY ALGORITHM; MEMETIC ALGORITHM; METRICS;
D O I
10.1016/j.ins.2013.06.051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When algorithms solve dynamic multi-objective optimisation problems (DMOOPs), performance measures are required to quantify the performance of the algorithm and to compare one algorithm's performance against that of other algorithms. However, for dynamic multi-objective optimisation (DMOO) there are no standard performance measures. This article provides an overview of the performance measures that have been used so far. In addition, issues with performance measures that are currently being used in the DMOO literature are highlighted. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 50 条
  • [21] The COMOGA method: constrained optimisation by multi-objective genetic algorithms
    Surry, PD
    Radcliffe, NJ
    CONTROL AND CYBERNETICS, 1997, 26 (03): : 391 - 412
  • [22] Robust design optimisation using multi-objective evolutionary algorithms
    Lee, D. S.
    Gonzalez, L. F.
    Periaux, J.
    Srinivas, K.
    COMPUTERS & FLUIDS, 2008, 37 (05) : 565 - 583
  • [23] Heterogeneous Dynamic Vector Evaluated Particle Swarm Optimisation for Dynamic Multi-objective Optimisation
    Helbig, Marde
    Engelbrecht, Andries P.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3151 - 3159
  • [24] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [25] A critical survey of performance indices for multi-objective optimisation
    Okabe, T
    Jin, YC
    Sendhoff, B
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 878 - 885
  • [26] Multi-objective optimisation of metabolic productivity and thermodynamic performance
    Xu, Mian
    Bhat, Shrikant
    Smith, Robin
    Stephens, Gill
    Sadhukhan, Jhuma
    COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (09) : 1438 - 1450
  • [27] Performance scaling of multi-objective evolutionary algorithms
    Khare, V
    Yao, X
    Deb, K
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2003, 2632 : 376 - 390
  • [28] A Hybrid Multi-objective Extremal Optimisation Approach for Multi-objective Combinatorial Optimisation Problems
    Gomez-Meneses, Pedro
    Randall, Marcus
    Lewis, Andrew
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [29] Multi-objective optimisation with uncertainty
    Jones, P
    Tiwari, A
    Roy, R
    Corbett, J
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, 2004, : 114 - 119
  • [30] Key Challenges and Future Directions of Dynamic Multi-objective Optimisation
    Helbig, Marde
    Deb, Kalyanmoy
    Engelbrecht, Andries
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 1256 - 1261