Performance measures for dynamic multi-objective optimisation algorithms

被引:81
|
作者
Helbig, Mande [1 ,2 ]
Engelbrecht, Andries P. [2 ]
机构
[1] CSIR, Meraka Inst, ZA-0184 Pretoria, South Africa
[2] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa
关键词
Dynamic multi-objective optimisation; Performance measure; FRONT GENETIC ALGORITHM; EVOLUTIONARY ALGORITHM; MEMETIC ALGORITHM; METRICS;
D O I
10.1016/j.ins.2013.06.051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When algorithms solve dynamic multi-objective optimisation problems (DMOOPs), performance measures are required to quantify the performance of the algorithm and to compare one algorithm's performance against that of other algorithms. However, for dynamic multi-objective optimisation (DMOO) there are no standard performance measures. This article provides an overview of the performance measures that have been used so far. In addition, issues with performance measures that are currently being used in the DMOO literature are highlighted. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 50 条
  • [1] Analysing the Performance of Dynamic Multi-objective Optimisation Algorithms
    Helbig, Marde
    Engelbrecht, Andries P.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 1531 - 1539
  • [2] Benchmarks for Dynamic Multi-Objective Optimisation Algorithms
    Helbig, Marde
    Engelbrecht, Andries P.
    ACM COMPUTING SURVEYS, 2014, 46 (03)
  • [3] Performance Measures for Dynamic Multi-Objective Optimization
    Camara, Mario
    Ortega, Julio
    de Toro, Francisco
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 760 - +
  • [4] High performance computing for dynamic multi-objective optimisation
    Department of Computer Architecture and Technology, University of Granada, ETSIIT, Daniel Saucedo s/n, 18071 Granada, Spain
    不详
    Int. J. High Perform. Syst. Archit., 2008, 4 (241-250): : 241 - 250
  • [5] On the Integrity of Performance Comparison for Evolutionary Multi-objective Optimisation Algorithms
    Wilson, Kevin
    Rostami, Shahin
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI), 2019, 840 : 3 - 15
  • [6] On Dynamic Multi-Objective Optimization, Classification and Performance Measures
    Tantar, Emilia
    Tantar, Alexandru-Adrian
    Bouvry, Pascal
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2759 - 2766
  • [7] Challenges of Dynamic Multi-objective Optimisation
    Helbig, Marde
    Engelbrecht, Andries P.
    2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 254 - 261
  • [8] Scalable benchmarks and performance measures for dynamic multi-objective optimization
    Sun, Baiqing
    Zhang, Changsheng
    Zhao, Haitong
    Yu, Zhang
    APPLIED SOFT COMPUTING, 2024, 159
  • [9] Evolutionary Dynamic Multi-objective Optimisation: A Survey
    Jiang, Shouyong
    Zou, Juan
    Yang, Shengxiang
    Yao, Xin
    ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [10] Multi-objective optimisation with stochastic algorithms and fuzzy definition of objective function
    Chiampi, M
    Fuerntratt, G
    Magele, C
    Ragusa, C
    Repetto, M
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 1998, 9 (04) : 381 - 389