Breast Cancer Risk and Insulin Resistance: Post Genome-Wide Gene-Environment Interaction Study Using a Random Survival Forest

被引:22
|
作者
Jung, Su Yon [1 ]
Papp, Jeanette C. [2 ]
Sobel, Eric M. [2 ]
Yu, Herbert [3 ]
Zhang, Zuo-Feng [4 ]
机构
[1] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Sch Med, Translat Sci Sect, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[3] Univ Hawaii, Canc Epidemiol Program, Ctr Canc, Honolulu, HI 96822 USA
[4] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA USA
关键词
ORAL-CONTRACEPTIVE USE; POSTMENOPAUSAL WOMEN; SUSCEPTIBILITY LOCI; GLUCOSE-METABOLISM; HORMONE-THERAPY; LUNG-CANCER; OBESITY; HEALTH; ASSOCIATION; HOMEOSTASIS;
D O I
10.1158/0008-5472.CAN-18-3688
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Obesity-insulin connections have been considered potential risk factors for postmenopausal breast cancer, and the association between insulin resistance (IR) genotypes and phenotypes can be modified by obesity-lifestyle factors, affecting breast cancer risk. In this study, we explored the role of IR in those pathways at the genome-wide level. We identified IR-genetic factors and selected lifestyles to generate risk profiles for postmenopausal breast cancer. Using large-scale cohort data from postmenopausal women in the Women's Health Initiative Database for Genotypes and Phenotypes Study, our previous genome-wide association gene-behavior interaction study identified 58 loci for associations with IR phenotypes (homeostatic model assessment-IR, hyperglycemia, and hyperinsulinemia). We evaluated those single-nucleotide polymorphisms (SNP) and additional 31 lifestyles in relation to breast cancer risk by conducting a two-stage multimodal random survival forest analysis. We identified the most predictive genetic and lifestyle variables in overall and subgroup analyses [stratified by body mass index (BMI), exercise, and dietary fat intake]. Two SNPs (LINC00460 rs17254590 and MKLN1 rs117911989), exogenous factors related to lifetime cumulative exposure to estrogen, BMI, and dietary alcohol consumption were the most common influential factors across the analyses. Individual SNPs did not have significant associations with breast cancer, but SNPs and lifestyles combined synergistically increased the risk of breast cancer in a gene-behavior, dose-dependent manner. These findings may contribute to more accurate predictions of breast cancer and suggest potential intervention strategies for women with specific genetic and lifestyle factors to reduce their breast cancer risk. Significance: These findings identify insulin resistance SNPs in combination with lifestyle as synergistic factors for breast cancer risk, suggesting lifestyle changes can prevent breast cancer in women who carry the risk genotypes.
引用
收藏
页码:2784 / 2794
页数:11
相关论文
共 50 条
  • [21] Efficient and accurate framework for genome-wide gene-environment interaction analysis in large-scale biobanks
    Ma, Yuzhuo
    Zhao, Yanlong
    Zhang, Ji-Feng
    Bi, Wenjian
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [22] Gene clusters linked to insulin resistance identified in a genome-wide study of the Taiwan Biobank population
    Lin, Eugene
    Yan, Yu-Ting
    Chen, Mu-Hong
    Yang, Albert C.
    Kuo, Po-Hsiu
    Tsai, Shih-Jen
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [23] Two-step hypothesis testing to detect gene-environment interactions in a genome-wide scan with a survival endpoint
    Kawaguchi, Eric S.
    Li, Gang
    Lewinger, Juan Pablo
    Gauderman, W. James
    STATISTICS IN MEDICINE, 2022, 41 (09) : 1644 - 1657
  • [24] Genome-Wide Analysis of Gene-Gene and Gene-Environment Interactions Using Closed-Form Wald Tests
    Yu, Zhaoxia
    Demetriou, Michael
    Gillen, Daniel L.
    GENETIC EPIDEMIOLOGY, 2015, 39 (06) : 446 - 455
  • [25] Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer
    Figueiredo, Jane C.
    Hsu, Li
    Hutter, Carolyn M.
    Lin, Yi
    Campbell, Peter T.
    Baron, John A.
    Berndt, Sonja I.
    Jiao, Shuo
    Casey, Graham
    Fortini, Barbara
    Chan, Andrew T.
    Cotterchio, Michelle
    Lemire, Mathieu
    Gallinger, Steven
    Harrison, Tabitha A.
    Le Marchand, Loic
    Newcomb, Polly A.
    Slattery, Martha L.
    Caan, Bette J.
    Carlson, Christopher S.
    Zanke, Brent W.
    Rosse, Stephanie A.
    Brenner, Hermann
    Giovannucci, Edward L.
    Wu, Kana
    Chang-Claude, Jenny
    Chanock, Stephen J.
    Curtis, Keith R.
    Duggan, David
    Gong, Jian
    Haile, Robert W.
    Hayes, Richard B.
    Hoffmeister, Michael
    Hopper, John L.
    Jenkins, Mark A.
    Kolonel, Laurence N.
    Qu, Conghui
    Rudolph, Anja
    Schoen, Robert E.
    Schumacher, Fredrick R.
    Seminara, Daniela
    Stelling, Deanna L.
    Thibodeau, Stephen N.
    Thornquist, Mark
    Warnick, Greg S.
    Henderson, Brian E.
    Ulrich, CorneliaM.
    Gauderman, W. James
    Potter, John D.
    White, Emily
    PLOS GENETICS, 2014, 10 (04):
  • [26] Pro-inflammatory cytokine polymorphisms and interactions with dietary alcohol and estrogen, risk factors for invasive breast cancer using a post genome-wide analysis for gene-gene and gene-lifestyle interaction
    Jung, Su Yon
    Papp, Jeanette C.
    Sobel, Eric M.
    Pellegrini, Matteo
    Yu, Herbert
    Zhang, Zuo-Feng
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Genome-Wide Gene-Environment Interaction Analysis Identifies Novel Candidate Variants for Growth Traits in Beef Cattle
    Deng, Tianyu
    Li, Keanning
    Du, Lili
    Liang, Mang
    Qian, Li
    Xue, Qingqing
    Qiu, Shiyuan
    Xu, Lingyang
    Zhang, Lupei
    Gao, Xue
    Lan, Xianyong
    Li, Junya
    Gao, Huijiang
    ANIMALS, 2024, 14 (11):
  • [28] Genetic modifiers of menopausal hormone replacement therapy and breast cancer risk: a genome-wide interaction study
    Rudolph, Anja
    Hein, Rebecca
    Lindstroem, Sara
    Beckmann, Lars
    Behrens, Sabine
    Liu, Jianjun
    Aschard, Hugues
    Bolla, Manjeet K.
    Wang, Jean
    Truong, Therese
    Cordina-Duverger, Emilie
    Menegaux, Florence
    Bruening, Thomas
    Harth, Volker
    Severi, Gianluca
    Baglietto, Laura
    Southey, Melissa
    Chanock, Stephen J.
    Lissowska, Jolanta
    Figueroa, Jonine D.
    Eriksson, Mikael
    Humpreys, Keith
    Darabi, Hatef
    Olson, Janet E.
    Stevens, Kristen N.
    Vachon, Celine M.
    Knight, Julia A.
    Glendon, Gord
    Mulligan, Anna Marie
    Ashworth, Alan
    Orr, Nicholas
    Schoemaker, Minouk
    Webb, Penny M.
    Guenel, Pascal
    Brauch, Hiltrud
    Giles, Graham
    Garcia-Closas, Montserrat
    Czene, Kamila
    Chenevix-Trench, Georgia
    Couch, Fergus J.
    Andrulis, Irene L.
    Swerdlow, Anthony
    Hunter, David J.
    Flesch-Janys, Dieter
    Easton, Douglas F.
    Hall, Per
    Nevanlinna, Heli
    Kraft, Peter
    Chang-Claude, Jenny
    ENDOCRINE-RELATED CANCER, 2013, 20 (06) : 875 - 887
  • [29] Evaluate the effects of serum urate level on bone mineral density: a genome-wide gene-environment interaction analysis in UK Biobank cohort
    Yao, Yao
    Chu, Xiaomeng
    Ma, Mei
    Ye, Jing
    Wen, Yan
    Li, Ping
    Cheng, Bolun
    Cheng, Shiqiang
    Zhang, Lu
    Liu, Li
    Qi, Xin
    Liang, Chujun
    Kafle, Om Prakash
    Wu, Cuiyan
    Wang, Sen
    Wang, Xi
    Ning, Yujie
    Zhang, Feng
    ENDOCRINE, 2021, 73 (03) : 702 - 711
  • [30] Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee
    Hamza, Taye H.
    Chen, Honglei
    Hill-Burns, Erin M.
    Rhodes, Shannon L.
    Montimurro, Jennifer
    Kay, Denise M.
    Tenesa, Albert
    Kusel, Victoria I.
    Sheehan, Patricia
    Eaaswarkhanth, Muthukrishnan
    Yearout, Dora
    Samii, Ali
    Roberts, John W.
    Agarwal, Pinky
    Bordelon, Yvette
    Park, Yikyung
    Wang, Liyong
    Gao, Jianjun
    Vance, Jeffery M.
    Kendler, Kenneth S.
    Bacanu, Silviu-Alin
    Scott, William K.
    Ritz, Beate
    Nutt, John
    Factor, Stewart A.
    Zabetian, Cyrus P.
    Payami, Haydeh
    PLOS GENETICS, 2011, 7 (08):